

http://www.opencubetech.com

User Guide

2.1

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

2

OpenCube Technologies SAS

10 Avenue de l'Europe
Parc Technologique du Canal
31520 Ramonville St Agne – FRANCE

Tel : +33 (0)561 285 606
Fax : +33 (0)561 285 635
E-mail : contact@opencubetech.com
MXFTk Support : support_mxftk@opencubetech.com
Internet : http://www.opencubetech.com

User Guide version 9.0 of MXFTk Application Programming Interface version 2.1.

Copyright © 2007 OpenCube Technologies SAS.
Software and user guides described in this document are protected by Copyright.
No reproduction, distribution or use in whole or in part of any content is permitted without prior authorization of OpenCube
Technologies SAS.
Any use, for any purpose, not allowed in the terms of the license is strictly forbidden.

OpenCube Technologies SAS uses reasonable efforts to include accurate, complete and current information in this document,
however, OpenCube Technologies SAS does not warrant that the content herein is accurate, complete, current, or free of technical or
typographical errors. OpenCube Technologies SAS reserves the right to make changes and updates to any information contained
within this document without prior notice.
OpenCube Technologies SAS shall not be responsible for any errors or omissions contained in this document, and in particular
OpenCube Technologies SAS shall not be liable for special, indirect, consequential, or incidental damages, or damages for lost
profits, loss of revenue, or loss of use, arising out of or related to the information contained in this document, whether such damages
arise in contract, negligence, tort, under statute, in equity, at law or otherwise.

[Linux is a registered trademark of Linus Torwald]
[Microsoft, MS DOS and Windows are registered trademarks of Microsoft Corporation.]
[Mac OS X is a registered trademark of Apple Computer, Inc.]
[CodeWarrior is a registered trademark of Metrowerks, a Motorola company.]
[C Builder is a registered trademark of Borland Software Corporation.]
[eVTR and XDCam are registered trademarks of Sony Corporation.]
[P2 is a registered trademark of Panasonic Corporation.]
[K2 is a registered trademark of Thomson Grass Valley Corporation.]
[Spectrum is a registered trademark of Omneon Corporation.]
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
All other trademarks and copyrights are the properties of their respective owners.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

3

Table of Contents

TABLE OF CONTENTS.. 3

1. PRELIMINARIES ... 8

1.1 MXF File Format ... 8

1.2 MXFTk.. 8

1.3 MXFTk Overview .. 9
1.3.1 MXF File Reading... 10
1.3.2 MXF File Writing ... 10
1.3.3 MXF File Update .. 11
1.3.4 Partial Restore ... 11
1.3.5 External References .. 11
1.3.6 MXFTk Memory Management ... 11
1.3.7 MXFTk Error Handling .. 12
1.3.8 Windows Compilation .. 12
1.3.9 A word about Unicode .. 12

1.4 Installation Procedure ... 12
1.4.1 Linux Platform .. 12
1.4.2 Mac OS X platform... 13
1.4.3 Windows platform... 13

1.5 Deployment Procedure .. 14
1.5.1 Linux Platform .. 14
1.5.2 Mac OS X platform... 14
1.5.3 Windows platform... 14

1.6 MXFTk Versions History .. 15
1.6.1 MXFTk 1.1 New Features... 15
1.6.2 MXFTk 1.2 New Features... 15
1.6.3 MXFTk 1.3 New Features... 15
1.6.4 MXFTk 1.4 New Features... 16
1.6.5 MXFTk 1.5 New Features... 16
1.6.6 MXFTk 2.0 New Features... 16
1.6.7 MXFTk 2.1 New Features... 16

2. API CONFIGURATION AND ERROR MANAGEMENT... 17

2.1 I_mxf_error_handler Class Reference ... 17

2.2 I_mxf_error Class Reference .. 18

3. MXF FILES... 20

3.1 I_mxf_file Class Reference .. 20

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

4

3.2 I_op1a_file Class Reference .. 25

3.3 I_evtr_file Class Reference.. 27

3.4 I_xdcam_imx_file Class Reference ... 27

3.5 I_xdcam_dv_file Class Reference ... 28

3.6 I_xdcam_hd_file Class Reference ... 29

3.7 I_xdcam_proxy_file Class Reference ... 29

3.8 I_op1b_file Class Reference .. 30

3.9 I_op1c_file Class Reference... 31

3.10 I_op2a_file Class Reference... 32

3.11 I_op2b_file Class Reference .. 34

3.12 I_op2c_file Class Reference... 35

3.13 I_op3a_file Class Reference... 37

3.14 I_op3b_file Class Reference .. 38

3.15 I_op3c_file Class Reference... 40

3.16 I_opatom_file Class Reference.. 42

3.17 I_dcp1_file Class Reference... 43

3.18 I_opatom_assembler Class Reference .. 43

3.19 Panasonic P2 Functions Reference ... 45

4. MATERIAL ... 47

4.1 I_generic_material Class Reference ... 47

4.2 I_track Class Reference... 49
4.2.1 I_track_item Class Reference.. 52
4.2.2 I_source_clip Class Reference .. 53
4.2.3 I_dm_source_clip Class Reference ... 55
4.2.4 I_dm_segment Class Reference .. 57

5. CONCRETE MATERIAL .. 59

5.1 I_concrete_material Class Reference ... 59

5.2 I_concrete_track Class Reference... 61

5.3 I_essence_type Class Reference .. 63

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

5

6. METADATA MATERIAL .. 67

6.1 I_metadata_material Class Reference.. 67

6.2 I_metadata Class Reference .. 68

6.3 I_property Class Reference ... 70

6.4 I_value Class Reference... 71

6.5 I_umid Class Reference ... 73

6.6 I_umid64 Class Reference ... 73

7. TIMECODE MATERIAL ... 75

7.1 I_timecode_material Class Reference .. 75

7.2 I_timecode Class Reference... 76

8. STREAMING .. 79

8.1 I_essence_stream_task Class Reference... 79

8.2 I_crypted_essence_stream_task Class Reference.. 81

8.3 I_input_metadata_stream_task Class Reference .. 82

8.4 I_output_mxf_stream_task Class Reference ... 82

8.5 I_input_mxf_stream_task Class Reference.. 83

8.6 I_input_partial_mxf_stream_task Class Reference .. 85

9. ESSENCE DESCRIPTORS... 86

9.1 I_mxf_file_descriptor Class Reference... 86

9.2 I_mxf_generic_picture_essence_descriptor Class Reference ... 86

9.3 I_mxf_cdci_picture_essence_descriptor Class Reference... 87

9.4 I_mxf_mpeg2_video_descriptor Class Reference.. 88

9.5 I_mxf_rgba_picture_essence_descriptor Class Reference.. 89

9.6 I_mxf_jpeg2000_picture_subdescriptor Class Reference... 89

9.7 I_mxf_generic_sound_essence_descriptor Class Reference ... 90

9.8 I_mxf_wave_audio_essence_descriptor Class Reference.. 91

9.9 I_mxf_aes3_audio_essence_descriptor Class Reference... 92

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

6

9.10 I_mxf_generic_data_essence_descriptor Class Reference.. 92

10. DATA HANDLING INTERFACES... 94

10.1 concrete_list Class Reference .. 94

10.2 generic_list Class Reference .. 94

10.3 I_timecode_component Class Reference .. 95

10.4 locators Class Reference .. 95

10.5 crypted_locator_element Class Reference ... 96

10.6 crypted_locators Class Reference ... 97

10.7 metadata_list Class Reference... 97

10.8 ordered_timecode_list Class Reference.. 98

10.9 ordered_track_item_list Class Reference .. 98

10.10 properties_list Class Reference ... 99

10.11 rational Class Reference .. 99

10.12 track_list Class Reference ... 100

10.13 mxf_file_list Class Reference... 101

11. DCP CREATOR .. 102

11.1 Composition Playlist .. 102
11.1.1 I_Marker Class Reference... 102
11.1.2 I_MarkerAsset Class Reference .. 102
11.1.3 I_ PictureTrackFileAsset class reference .. 103
11.1.4 I_ SoundTrackFileAsset class reference ... 105
11.1.5 I_ SubtitleTrackFileAsset class reference ... 106
11.1.6 I_Reel Class Reference ... 107
11.1.7 I_ CompositionPlayList Class Reference.. 108

11.2 Packing List .. 109
11.2.1 I_Asset Class Reference.. 110
11.2.2 I_PackingList Class Reference.. 110

11.3 Asset Map and Volume Index ... 111
11.3.1 I_Chunk Class Reference .. 112
11.3.2 I_Asset Class Reference.. 112
11.3.3 I_AssetMap Class Reference .. 113
11.3.4 I_VolumeIndex Class Reference... 114

11.4 DCPCreator.. 114
11.4.1 Options and creation ... 115
11.4.2 I_DCPCreator class reference ... 116

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

7

MXFTK .. 118

Classes ... 118

Typedefs .. 119

Functions... 119

Enumeration Types.. 122

Error Messages... 125

REFERENCES.. 130

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

8

1. Preliminaries

1.1 MXF File Format

MXF (standing for Material eXchange Format) is a file format aiming to improve data and metadata exchange. The
targeted objective is the interoperability between content creation mainframes, work stations and peripherals.

This wrapper file format was designed to make use of current and forthcoming data formats. Hence, it not only
allows exchange of contents in MPEG, DV or else but also improves interoperability between editing systems. In the
mean time, it also permits conveyance of metadata following standardized schemes.

1.2 MXFTk

MXFTk is a C++ library for Linux, Mac OS X and Windows operating systems that enables creation and reading of
MXF files following the MXF norm from the SMPTE. The use of this library is performed thanks to a set of classes and
methods that constitutes an API (Application Programming Interface). The main objective of MXFTk is to let
developers manipulate MXF files at will without prior knowledge of the complex mechanisms of this format.
Nonetheless, a basic understanding of the MXF file structure is mandatory to build and use these files. API users
referring to the MXF File Format glossary [377M] will find definitions specific to the MXF terminology. In order to
get a first insight over these requisites, it is advised to read the MXF Engineering Guideline [EG41]. Metadata
management also requires proficiency with metadata schemes covered by the SMPTE MXF Descriptive Metadata
Engineering Guideline [EG42] and the SMPTE MXF Descriptive Metadata Scheme [380M].

The MXF file format manipulates two distinguished types of metadata: structural and descriptive. Structural
metadata builds the architecture of an MXF file: it describes the structure and the ordering of the file content. On the
other hand, descriptive metadata corresponds to the metadata set by the user (DMS1 or else).

The API MXFTk is built so that the descriptive metadata is freely and fully filled by the API user while the
structural metadata remains entirely controlled by the API. Therefore the API task lies in the conversion of C++ objects
into structural metadata and vice-versa.

The following table summarizes the main features of MXFTk:

TAB. 1: MXFTk versions.

 MXFTk

Op1a to Op3c files Read/Write/Partial Restore

OpAtom files Read/Write/Partial Restore

SONY XDCam files Read/Write/Partial Restore

SONY eVTR files Read/Write/Partial Restore

Panasonic P2 files Read/Write/Partial Restore

Omneon Mediagrid files Read/Write/Partial Restore

Thomson K2/Infinity files Read/Write/Partial Restore

External References Supported

IMX, MPEG Long-GOP, DV, DVCPro Supported

Uncompressed Images, JPEG2K, VC-3(DnxHD) Supported

BWF, AES, 8-channel AES, A-law Supported

Active/Passive Streaming Supported

DCI Package Creation and AES Encryption Supported

Descriptive Metadata Read/Write/Update

Timecode Read/Write/Update

Random Access Supported

Partitioning Supported

Index Tables Supported

Reverse Play Supported

Platforms Windows, Linux, Macintosh PPC & i386

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

9

1.3 MXFTk Overview

MXFTk library relies on three fundamental concepts:

– MXF files.
– Audiovisual, metadata and timecode materials.
– Tracks.

These three models are organized as follows:
An MXF file includes a given number of materials: more precisely, it holds at least one output material and one

embedded material. Hence, the simplest files embed no more than one audiovisual material (for instance a DV clip)
that is also the output material (it is played as is; no editing of the source is performed). More intricate files may
perform an edition by cutting and mixing several audiovisual sources. It is even conceivable to create MXF files
containing a large number of materials and offering various output editions.

A material represents data. Four kinds of materials can be manipulated with the API MXFTk: audiovisual material

(concrete_material), metadata material, time positioning material (timecode_material) and editing material
(generic_material). For instance, let’s consider a material embodying a multimedia file (an MPEG clip) containing
both video and audio data to be played for a given duration. In order to identify its content, the material carries an
enumeration of tracks (in our simple case, there will be one audio track and one video track in the material).

As stated just before, tracks represent the content of the materials. Each of them holds a specific type of data (audio,
video, etc.) as well as its time positioning and duration. The tracks of a generic_material can even contain references to
concrete_materials allowing editing of the audiovisual sources. This would be the case of a generic_material aiming to
play sequentially two video clips; each clip would be stored in the video track of a concrete_material. The two
resulting materials would then be referenced one after the other by the output generic_material’s tracks to get the
desired file play out.

MXF files complexity is depicted by their Operational Pattern (also called OP in the MXF terminology). Nine

operational patterns ranging from the simplest (Op1a) to the trickiest (Op3c) can be distinguished as stated by the
following table. Their precise and exhaustive description can be found in the documents [EG41] and [377M]. Another
particular operational pattern is called OpAtom. MXF files following this pattern contain a single embedded
audiovisual material but still allow complex editing by referencing material from other OpAtom files.

TAB. 2: Operational Pattern

 Complexity

 single play-list edit

 Single OP1a OP2a OP3a

Material Ganged OP1b OP2b OP3b

 Alternate OP1c OP2c OP3c

• Op1a: the simplest and commonest operational pattern containing a single concrete_material which is
played as is by the unique generic_material. Files produced by the eVTR from Sony are an extension of the
Op1a.

• Op2a: there is a single generic_material consisting in several concrete_materials played sequentially.

• Op3a: there is a single generic_material consisting in playing sequentially some clips cut from the
concrete_materials.

• Op1b: there is a single generic_material playing simultaneously the concrete_materials.

• Op2b: this operational pattern extends the Op1b just as the Op2a was extending the Op1a: it connects
sequentially concrete_materials played simultaneously.

• Op3b: this operational pattern extends the Op2b just as the Op3a was extending the Op2a: it connects
sequentially clips cut from concrete_materials played simultaneously.

• Op1c: there is no restriction on the number of generic_materials. However, each of them plays
simultaneously one or more concrete_materials.

• Op2c: there is no restriction on the number of generic_materials. However at least one of them corresponds to
an Op2b material package.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

10

• Op3c: the most intricate operational pattern. It has no restriction on the number of generic_materials.
However, at least one of them corresponds to an Op3b generic_material.

• OpAtom: this operational pattern embeds a single source package which consists in a single source (only
video or audio). However, the generic_material may allow building complex editing (Op1a, Op1b, Op2a, and

Op2b) by referencing concrete_materials from other OpAtom files. This pattern is heavily supported by
manufacturers such as Panasonic.

MXFTk will let you read and write Op1a-3c and OpAtom files.

1.3.1 MXF File Reading

The reading of an MXF file begins with the instantiation of an mxf_file object with the complete path to the file to

unwrap. The version 2.0 introduced several opening modes optimized depending on the task you want to perform with
the MXF file (read metadata only, access to the essence, random access to the essence). This creation of the mxf_file
object automatically launches the decoding process. Upon completion the number of output materials
(generic_material) and embedded materials (concrete_material) can be retrieved from that object. These materials can
be questioned to find out which decoders are required to decipher the materials’ tracks content. Finally, the API grants
access to the binary data through reading methods. This scheme can be repeated whenever the user wishes to read or
play the audiovisual stream of a file.

Similarly, the descriptive metadata can be read as follows. The first step consists in checking the availability of
metadata tracks in each material (this would be an I_track object which type is timeline_metadata, event_metadata or
static_metadata). In the next step, the metadata_materials held by dm_segments are retrieved from these metadata
tracks. To end with, each metadata_material includes a metadata object conveying the descriptive metadata. The
metadata object is the root of an arborescence structure whose nodes contain properties (I_property). Each property
can be read separately. MXFTk also provide methods to directly output the metadata in an XML file or buffer.

1.3.2 MXF File Writing

Depending on the intricacy of the file to be written, the user chooses the operational pattern that best matches its

purpose. For instance, no editing will be allowed in a straightforward Op1a pattern while imbricate materials and a
wide range of file play outs will become possible in an Op3c pattern. Once chosen, the appropriate object deriving
from mxf_file can be instantiated (an op1a_file for instance). Then, for each multimedia source (essence in the MXF
terminology) to embed in the file, a concrete_material must be created. These materials must be appended to the
mxf_file just built using the API methods available for this operational pattern. Newt it is also possible to configure
several properties of the file such as partitioning, index table creation, header metadata repetition, etc. Finally the
function I_mxf_file::flush() will launch the creation process.

Descriptive metadata can be used to annotate output or embedded materials, either in their entirety or only during a

limited time scope. MXFTk leaves the option to perform an edition of the descriptive metadata, stating for instance the
new actors appearing while playing a video clip. The descriptive metadata creation process is subdivided in several
steps. First of all a new metadata track must be created. Depending on the properties of the metadata to be added, the
user must opt for the most appropriate kind of metadata track. If the metadata annotates the content of the material in a
time-linear fashion, then a timeline_metadata track is required. On the other hand, if the metadata documents the
material with a set of non-adjacent or overlapping events, then an event_metadata track suits. Finally, if the metadata
does not contain time references and documents the material’s tracks as a whole, the user should pick a static_metadata

track.

Let’s consider the simple case where MXFTk user wishes to annotate the output material of an Op1a MXF file. To

do so, he will be required to go through the following steps:
– Create a metadata tree I_metadata from a valid XML file or step-by-step using the API methods.
– Link the resulting metadata tree to a new metadata material I_metadata_material.
– Create a new static_metadata track I_track in the I_generic_material to annotate.
– Append the I_metadata_material to the newly created track.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

11

1.3.3 MXF File Update

When updating an MXF file the user may change the timecode and add or remove descriptive metadata. In order to

do so, an mxf_file interface is created, opening the MXF file to be updated. Using the appropriate interfaces
I_timecode_material and I_metadata_material you get access to the function performing timecode and metadata
update. Note that the changes made to the file will only be performed when closing it using the function
UpdateAndFreeMxfFileInterface.

Warning! If you update an MXF file from a given manufacturer, there is no guarantee that it will remain
compatible with the manufacturer’s device.

1.3.4 Partial Restore

MXF file format provides mechanisms to perform partial restore of MXF files. MXFTk lets you perform this task

in a single call to a C function. You simply need to specify the source MXF file and the time span you wish to retrieve
thanks to the timecode in and out values. The API will create a new object mxf_file ready to be flushed on disk or
streamed in a networked environment. Please refer to the function NewPartialRestoreMxfFileInterface from
I_mxf_file class reference for a complete overview.

1.3.5 External References

In some cases, you will need to decode or create MXF files without any embedded audiovisual material. The source

video and audio data will be stored in separate files either as raw media files or as several MXF files. In that case, it will
require a little bit more of processing.

� When decoding an MXF file containing external references, the location of the referenced files can be
retrieved thanks to the function I_essence_type::external_references(). After checking the validity of
the references, they can be loaded using I_concrete_track::set_external_ref_file(). Then, the mxf_file

object can be manipulated seamlessly as if the audiovisual material was embedded in the file.
� When creating an MXF file containing external references to raw media files, the function

NewExtConcreteMaterialInterface() will be called in place of NewConcreteMaterialInterface() but
the creation process will remain similar.

� When creating an MXF file containing external references to other MXF files, I_op1a_file to I_op3c_file
interfaces provide specific interface to append an external concrete_material but the creation process will
also remain similar.

� When performing the partial restore of an MXF file containing external references, the referenced raw or
MXF files will not be involved in the process. It will create a single new file referencing only the selected
time span but the referenced files will remain untouched. If the referenced MXF files need to be partly
restored as well, a partial restore process should be launched on each of them individually first. Then the
concrete_material from each newly created file can be assembled in a new MXF file.

1.3.6 MXFTk Memory Management

The C++ classes of the API are pure virtual classes (interfaces) that can not be instantiated with a “new”. For that

reason, memory allocation and deallocation are handled by “C” style functions whose name usually starts with “New”
or “Free”. In terms of implementation on the application side, the consequence is that you will exclusively manipulate
pointers on MXFTk interfaces. For optimal memory management reasons, any object allocated by the API must be
freed using MXFTk memory deallocation methods. Neither explicit nor implicit calls to constructors and destructors
via new, delete or even dynamic_cast should occur on MXFTk objects. Failure to meet these requirements will
invariably result in memory leaks and/or crashes in your code. For the same reasons, MXFTk will never destroy
objects or buffers that were allocated on the library’s client side; you will always remain responsible for the deletion of
the memory you allocated.

Header files documentation clearly specifies the deletion responsibility for each parameter and returned value.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

12

1.3.7 MXFTk Error Handling

The class I_mxf_error helps managing, detecting and identifying MXFTk internal errors. It can be useful to
notice, for instance, wrong file paths or unrecognized property labels. When an error arises, the API pushes it on an
error stack that can be questioned thanks to an error manager I_mxf_error_handler. Raised errors are sorted
depending on their gravity and also return an error identification helping to perform an advanced error processing.
Finally, the error handler includes support for internationalization by letting you specify the current active language for
error messages. MXFTk comes along with an English American dictionary but you may translate the error messages in
any language if required.

MXFTk user is encouraged to get used to MXFTk functionalities with the help of the numerous examples

accompanying the installation. These programs explore the most common scenarios: an MXF file wrapper, an MXF
File Unwrapper, an MXF to XML converter, an OpAtom wrapper, an OpAtom unwrapper, an MXF file wrapper with
import of XML metadata, an MXF file wrapper with timecode redefinition, an MXF file wrapper in streaming mode,
an MXF file unwrapper in streaming mode, etc. These examples are also particularly useful to apprehend MXFTk error
management.

1.3.8 Windows Compilation

MXFTk interfaces do not contain dependencies on the C runtime library. In other words, the dynamically linked

library mxf_tk.dll should compile with the runtime library of your choice (either static, multithreaded or dll
multithreaded). Moreover, to address the maximum number of compilers, import libraries following both the COFF
and OMF name mangling rules can be found in the lib directory of your installation. You should use the COFF library
with Microsoft and Metrowerks compilers while the OMF library is meant to be used with Borland compilers. Your
installation directory includes some projects ready to be compiled with Microsoft Visual C++ and Borland C Builder.

1.3.9 A word about Unicode

Unicode UTF16 characters are manipulated thanks to the wchar_t data type within MXFTk. However, you must be

aware that depending on the platform the size of this data type is different. On the Windows platform sizeof(wchar_t)

= 2 while on the Linux and Mac platform sizeof(wchar_t) = 4. When writing portable code, you should not assume that
the size of the Unicode wchar_t characters returned by MXFTk will always be 2-byte long.

1.4 Installation Procedure

1.4.1 Linux Platform

- Insert your MXFTk installation CD in your player. Go to the directory MXFTk and execute the shell command
“install_mxftk_linux.run [installation_directory]” and “install_dcpcreator_linux.run [installation_directory]”
if you also wish to use the DCP functions. If the installation directory is not specifed MXFTk and DCPCreator
will be installed in /usr/local.

- The following elements will be created during the installation procedure:
� prefix_path/bin
� prefix_path/lib/libmxf_tk.so.2.0.0
� prefix_path/lib/libmxf_tk.so.2.0
� prefix_path/lib/libmxf_tk.so.2
� prefix_path/lib/libmxf_tk.so
� prefix_path/include/mxf_tk
� prefix_path/share/mxftk

- And for the DCPCreator library:

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

13

� prefix_path/bin
� prefix_path/lib/libdcpcreator.so.1.0.0
� prefix_path/lib/libdcpcreator.so.1.0
� prefix_path/lib/libdcpcreator.so.1
� prefix_path/lib/libdcpcreator.so
� prefix_path/include/dcpcreator
� prefix_path/share/dcpcreator

- In the directories called “prefix_path/include/mxf_tk” and “prefix_path/include/dcpcreator” you will find all

the header files required to use the API. The directory “prefix_path/share/mxftk/dic” contains the default XML
schema (dictionary) loaded while using the API. You will be able to get an electronic version of this user guide
browsing down to the directory “prefix_path/share/doc”, Finally, you can remove MXFTk by executing the
script “prefix_path/share/bin/unsintall_mxftk.run” and DCPCreator with
“prefix_path/share/bin/uninstall_dcpcreator.run”.

- The libraries require one environment variable to work properly (MXF_HOME). MXF_HOME should point
to the installation directory (for instance “prefix_path”) and LD_LIBRARY_PATH is the directory search list
used by your linker. You may have to update it to include $MXF_HOME/lib. It is possible to run MXFTk
without setting the MXF_HOME environment variable, for more information on this possibility please refer to
the chapter “Deployment Procedure”.

- You will need a valid license key file in order to use MXFTk. You can get a license key by registering to
www.mxftk.com and then you simply need to load the license file you will receive with OpenCube’s license
keys manager application. This product is part of your installation package.

- After completing the previous steps, if you browse down to MXFTk/linux/bin, you will find a file called
opencube.mxftk.license.lcs containing the licensing information for your distribution of the API. It usually
includes the name of your company and should always remain in the bin folder.

- Please be aware that if you wish to move the library libmxf_tk.so to another folder, you must necessarily move
the license file and update your environment variable accordingly.

- The “examples” directory contains several shell executables ready to be compiled.

1.4.2 Mac OS X platform

- Insert your MXFTk installation CD in your player and execute MXFTk and DCPCreator MacOSX packages.
- Two new frameworks will be installed in the directory "/Library/Frameworks". The names of the framework

are mxf_tk.framework and DCPCreator.framework.
- In the installation directory you will find all the binary and header files required to use the API. The directory

“dic” contains the default XML schema (dictionary) loaded while using the API. Finally you will be able to get
an electronic version of this user guide browsing down to the directory “doc”.

- The libraries require one environment variable to work properly (MXF_HOME). MXF_HOME should point
to your installation directory. If required, it is possible to run MXFTk without setting the MXF_HOME
environment variable, for more information on this possibility please refer to the chapter “Deployment
Procedure”.

- You will need a valid license key file in order to use MXFTk. You can get a license key by registering to
www.mxftk.com and then you simply need to load the license file you will receive with OpenCube’s license
keys manager.

- After completing the previous steps, you will find in your installation directory a file called
opencube.mxftk.license.lcs containing the licensing information for your distribution of the API. It usually
includes the name of your company if you and should always remain in the bin folder.

1.4.3 Windows platform

- Make sure to have administrator rights before performing this installation.
- Note that during the installation, antivirus software may warn you about the activity of shell commands. These

commands are required to perform the installation and you should ignore the antivirus warnings.
- Insert your MXFTk installation CD in your player. The installation procedure should start automatically. If not

simply launch Setup.exe.
- Follow the installation procedure. The application “KeyManager” will be installed, from there you will be able

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

14

to launch the installation of MXFTk.
- In the installation directory you will find all the binary and header files required to use the API. The directory

“dic” contains the default XML schema (dictionary) loaded while using the API. Finally, you will be able to
get an electronic version of this user guide browsing down to the directory “doc”.

- The library requires one environment variable to work properly (MXF_HOME). MXF_HOME should point to
the installation directory (for instance /Projects/Dlls/MXFTk). You can check that this variable was correctly
set during the installation. It is possible to run MXFTk without setting the MXF_HOME environment variable,
for more information on this possibility please refer to the chapter “Deployment Procedure”.

- Additionally, the path to mxftk.dll should be appended to your variable PATH to permit dynamic linkage at
runtime. This task is also automatically performed during the installation.

- You will need a valid license key file in order to use MXFTk. You can get a license key by registering to
www.mxftk.com and then you simply need to load the license file you will receive with OpenCube’s license
keys manager.

- The directory MXFTk\lib contains two import libraries respectively in the COFF and OMF format. You
should use the COFF library if you compile with Microsoft Visual or Metrowerks CodeWarrior compilers.
Alternatively, the OMF library targets users of Borland C Builder compilers.

- The “examples” directory contains several examples ready to be compiled.

1.5 Deployment Procedure

This section describes the requirements to use MXFTk while using and installing it in a third-party application.

1.5.1 Linux Platform

- The following exhaustive list summarizes the files from your MXFTk installation that are mandatory for a
correct behavior of MFTk. All these files should be included while deploying MXFTk:

� prefix_path/bin/opencube.mxftk.license.lcs.
� prefix_path/lib/libmxftk.so.2.0.0 (and sym links)
� prefix_path/lib/libdcpcreator.so.1.0.0 (and sym links)

- MXF_HOME should be set during the installation and should point to the directory containing your
installation of MXFTk. In your program, you will need to call the function InitMXF_TK().

OR
- MXF_HOME is not set during the installation. In your program you will need to call InitMXF_TK2(). The

parameter for this function should be the path to the directory containing your installation of MXFTk.

1.5.2 Mac OS X platform

- mxf_tk.framework and DCPCreator.framework (for DCP) are required in deployment. It is possible to remove
any component of these frameworks. Removable components:

� mxf_tk.framework/Headers
� mxf_tk.framework/Versions/A/Resources/doc
� mxf_tk.framework/Versions/A/Resources/examples
� mxf_tk.framework/Versions/A/Resources/dic
� mxf_tk.framework/Versions/A/include
� mxf_tk.framework/Versions/A/Headers

- MXF_HOME should be set during the installation and should point to the directory containing your
installation of MXFTk. In your program, you will need to call the function InitMXF_TK().

OR
- MXF_HOME is not set during the installation. In your program you will need to call InitMXF_TK2(). The

parameter for this function should be the path to the directory containing your installation of MXFTk.

1.5.3 Windows platform

- The following exhaustive list summarizes the files from your MXFTk installation that are mandatory for a
correct behaviour of MXFTk. All these files should be included while deploying MXFTk:

� mxf_tk.dll
� opencube.mxftk.license.lcs

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

15

� dcpcreator.dll (only required if you use the DCP creation functions)
� msvcp71.dll (in Windows system directory)
� msvcr71.dll (in Windows system directory)

- Note that the license file should be located next to mxf_tk.dll
- MXF_HOME should be set during the installation and should point to the directory containing your

installation of MXFTk. In your program, you will need to call the function InitMXF_TK().
OR

- MXF_HOME is not set during the installation. In your program you will need to call InitMXF_TK2(). The
parameter for this function should be the path to the directory containing your installation of MXFTk.

1.6 MXFTk Versions History

1.6.1 MXFTk 1.1 New Features

Here is a brief summary of the new features of MXFTk 1.1:

• Improved compatibility with all the compilers. Removed all dependencies to the C runtime library.

• Improved Error Management with error identification, classification and error messages internationalization.

• Added complete streaming capability upon wrapping/unwrapping.

• Added support of OpAtom 1-2/a-b files (Advanced version only).

• Added random access to audiovisual data from the generic material (material package) and concrete material
(top level source package) (Advanced version only).

• Added access to data from a given timecode value (Advanced version only).

• Added complete support of index tables (Advanced version only).

• New essences now fully supported: AES and MPEG 2 Transport Stream and Program Stream.

• Added a new class identifying the video/audio format of a track.

• Improved management of generic containers.

• Improved installation procedure on Windows platform.

• Optimized file processing.

• Improved support of large files (> 4 Gbytes).

1.6.2 MXFTk 1.2 New Features

Here is a brief summary of the new features of MXFTk 1.2:

• Added support of Panasonic P2 files.

• Added support of SONY XDCam files.

• Improved data retrieval from the essence descriptors (I_essence_type).

• New essences now fully supported: A-law and MPEG 4.

• Added support of the Reverse Play feature.

1.6.3 MXFTk 1.3 New Features

Here is a brief summary of the new features of MXFTk 1.3:

• Added the partial restore capability (between two timecode values).

• Improved support of Panasonic P2 files (NTSC).

• Improved support of SONY XDCam files (possibility to retrieve the embedded XML file). See function
I_mxf_file::get_embedded_xml().

• Clip wrapping of files larger than 2GB is now enabled.

• The streaming interfaces can now be set as “seekable”.

• New functions for easier timecode manipulation.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

16

1.6.4 MXFTk 1.4 New Features

Here is a brief summary of the new features of MXFTk 1.4:

• Support of MAC OS X platform.

• Added support of operational patterns 1b, 2a and 2b.

• Improved file update (changes are now directly applied to the source).

• Improved descriptive metadata manipulation (new functions to remove existing metadata)

• Panasonic P2 files can now be created with streamed essence sources.

• Introduction of active and passive mode while wrapping MXF files in a streaming environment.

• Mono and stereo AES3 sources embedded in an MXF file can now be extracted in WAVE format.

• Wrapping of SONY XDCam DV and Panasonic P2 files can now be performed with AES3 or WAV sources.

1.6.5 MXFTk 1.5 New Features

Here is a brief summary of the new features of MXFTk 1.5:

• Support of uncompressed images.

• Support of JPEG2K images.

• Support of AES encryption.

• Added compatibility with DCI (Digital Cinema Initiative).

• Added new streaming capabilities.

• Added new metadata dictionary following the latest norm.

• Added a new function to the I_property class helping the creation of metadata trees.

1.6.6 MXFTk 2.0 New Features

Here is a brief summary of the new features of MXFTk 2.0:

• Support of complete Digital Cinema Package creation.

• Support of external references to raw media.

• Support of external references to MXF files.

• Support of Omneon Mediagrid files with external references.

• Support of Thomson K2 files.

• Improved support of Panasonic P2 DVCProHD files.

• Added support of DNxHD.

• Added support of AIFF audio.

• D10 MXF files can now be wrapped/unwrapped using WAVE audio instead of 8-channel AES.

• Mono and stereo Wave files can now be wrapped as AES audio.

• Added new progress function during MXF wrapping.

• Added new MXF files opening modes.

• Simplified deployment procedure.

1.6.7 MXFTk 2.1 New Features

Here is a brief summary of the new features of MXFTk 2.1:

• Support of XDCam HD wrapping.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

17

2. API Configuration and Error Management

void ExtractAesToWave (bool)

When the parameter is set to true, AES3 sources embedded in an MXF file will be extracted in a WAVE file.
Default value is false.

void ExtractAes8ToWave (bool)

When the parameter is set to true, 8-channel AES3 sources (D10 audio) embedded in an MXF file will be extracted
in a Wave file. Note that only the tracks flagged as valid will be extracted. Default value is false.

void WrapWaveAsAes (bool)

When the parameter is set to true, mono and stereo Wave files will be embedded as AES sources during the next
wrapping process. Default value is false.

void WrapWaveAsAes 8(bool)

When the parameter is set to true, Wave files (mono to 8-channel) will be embedded as 8-channel AES sources
(D10 audio) during the next wrapping process. Default value is false.

void ExtractCustomByKLV (bool)

Use this function to set the essence extraction behaviour when performing MXF unwrapping of custom wrapped
MXF files (i.e. XDCam proxy). When the parameter is set to false (default) the essence is extracted edit unit by edit
unit. When the parameter is set to true, the extraction is performed KLV by KLV and each KLV will contain
several edit units. The KLV mode is likely to improve performances.

void InitMXF_TK ()

This function initializes the API MXFTk. Any binary making use of the library should always call it first of all. It
prepares the API to be ready to perform future tasks. This function will also validate your license key and the
environment variable MXF_HOME should be correctly set before calling this function. Refer to the “Deployment
Procedure” section for more information.

void InitMXF_TK2 (const char*)

This function initializes the API MXFTk. Any binary making use of the library should always call this function or
the previous one. It prepares the API to be ready to perform future tasks. This function will also validate your
license key. The parameter is the complete path toward the directory containing the MXFTk library. Refer to the
“Deployment Procedure” section for more information.

void SetDictionary (const char*)

This function specifies a new metadata dictionary (XML scheme) to be used in the following calls of the API. The
default dictionary is set upon calling of InitMXF_TK() or InitMXF_TK2() so you will need to call this function
only if you wish to make use of an alternate scheme.

bool GetMxfErrorHandlerInterface (I_mxf_error_handler **)
This function lets you retrieve the interface handling MXFTk errors. This object is created upon loading of the
dynamic library and will be shared by all the processes. Thus, this function does not allocate a new
I_mxf_error_handler and the pointer returned is automatically deleted upon unloading of the dynamic library.

2.1 I_mxf_error_handler Class Reference

#include <I_mxf_error.hpp>

This class manages a stack of errors for MXFTk. When an error occurs it is added to the stack waiting for the user
to retrieve it. It can be cleared once the errors have been retrieved. This class also provides support for
internationalization of error messages. Details on how to properly use it and build a try...catch-like mechanism can
be found in the examples of your installation directory.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

18

Public Member Functions

bool clear ()
bool free_errors (error_list *) const
error_list *get_errors ()
bool has_an_error () const
bool set_error_dictionary (const char *)

Member Functions Documentation

bool clear ()
Removes all the errors from the stack. The stack will be empty after calling this function, ready to enlist future
errors. Return false if an error occurred.

bool free_errors (error_list *) const
Frees the list of errors returned by get_errors(). It only frees the list, errors remain in the stack. To remove errors
from the stack use clear() instead. Returns false if an error occurred.

error_list *get_errors ()
Returns the list of errors currently stored in the stack. Return an empty list if the stack is empty and a NULL pointer
if the list of errors could not be retrieved.

bool has_an_error () const

Returns false if the error stack is empty and true otherwise.

bool set_error_dictionary (const char *)
The default dictionary is in English but if you wish to internationalize your application you may need to define
dictionaries for other languages. Call this function to set your own error dictionary. The parameter must define the
path toward the new dictionary.
Error dictionaries must be saved in Unicode UTF16 and their syntax is pretty straightforward: there should be one
error per line and each line must start with the error id bracketed between two ‘#’ followed by the error message
bracketed between ‘< >’. For instance:

 #1002# <Cannot proceed: Trying to add metadata to a picture, sound or data track>

Finally your dictionary file should not be larger than 64Kbytes (32K UTF16 characters). The function returns false
if the new language could not be set. Please note that the complete list of errors can be found at the end of this
document.

2.2 I_mxf_error Class Reference

#include <I_mxf_error.hpp>

This class lets you manipulate and retrieve information from an error that occurred within MXFTk. Errors are managed
by the class I_mxf_error_handler and are returned by the function get_errors().

Public Member Functions

const wchar_t *get_error_msg () const
gravity get_gravity () const
uint32_t get_id () const

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

19

Member Functions Documentation

const wchar_t *get_error_msg () const
Returns a message helping to understand the nature of the error. It is displayed in the language that was set with the
function I_mxf_error_handler::set_language(). Returns NULL if the error message could not be found.

gravity get_gravity () const
Returns the seriousness of the error. This works as a filter letting you decide what action to undertake depending on
the gravity.

uint32_t get_id () const
Returns the unique identifier of the error as stored in the error dictionary.

Related Documentation

enum gravity

Enumeration values:

MXF_NONE
MXF_CAUTION
MXF_WARNING
MXF_FATAL

This enumeration defines the different levels of gravity of an error.

MXF_NONE is returned when the error could not be identified.

MXF_CAUTION is the lowest gravity. This generally means that the user tries to undertake an illegal operation on
the MXF file or that an unexpected event occurred. However, this error should not stop MXFTk from working
correctly and the validity of the MXF files being manipulated has not been affected by this error. For instance, this
gravity of error will be set if you are trying to reach an invalid timecode.

MXF_WARNING denotes a more serious error. The validity of the file being manipulated is at least partially
altered and future manipulations of the file may lead to unexpected behaviour. However, it is really likely that the
overall behaviour of MXFTk will remain correct while reading or writing other MXF files. For instance, this
gravity of error will be set if you are trying to read an invalid MXF file.

MXF_FATAL is the highest gravity. It generally means MXFTk cannot continue to work properly at least with the
file being manipulated. For instance, this gravity of error will be set if the toolkit cannot find a valid license key.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

20

3. MXF Files

This API release supports Op1a, Op1b, Op1c, Op2a, Op2b, Opc2c, Op3a, Op3b, Op3c and OpAtom files. Currently
MXFTk relies on C++ classes representing MXF files. Their utility is determined by the task to be performed:

• mxf_file, to read and update MXF files.

• op1a_file, to write Op1a MXF files.

• op1b_file, to write Op1b MXF files.

• op1c_file, to write Op1c MXF files.

• op2a_file, to write Op2a MXF files.

• op2b_file, to write Op2b MXF files.

• op2c_file, to write Op2c MXF files.

• op3a_file, to write Op3a MXF files.

• op3b_file, to write Op3b MXF files.

• op3c_file, to write Op3c MXF files.

• evtr_file, to write MXF files following the same attributes as those generated by the SONY eVTR device.

• xdcam_imx_file to write D10 MXF files following the same attributes as those generated by the SONY
XDCam camcorder.

• xdcam_dv_file to write DVCam+AES MXF files following the same attributes as those generated by the
SONY XDCam camcorder.

• xdcam_proxy_file to write MPEG4+A-law MXF files following the same attributes as those generated by the
SONY XDCam camcorder.

• opatom_file, to read and write OpAtom MXF files. Furthermore two C functions called NewP2Shot and
NewP2ShotFromStream generate DVCPro+AES3 MXF files following the same attributes as those
generated by the Panasonic P2 camcorder.

3.1 I_mxf_file Class Reference

#include <I_mxf_file.hpp>

This class should be used whenever you wish to read or update an MXF file.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

21

Public Member Functions

concrete_list *embedded_material ()
bool end_of_stream ()
bool flush ()
bool flush_file (const char *)
bool flush_thread_cancel ()
double flush_thread_progress ()
bool flush_stream (I_output_mxf_stream_task *)
bool flush_thread_running ()
bool free_concrete_list (concrete_list *)
bool free_generic_list (generic_list *)
bool free_identifications (metadata_list *) const
metadata_list *get_identifications () const
const char *get_parameter (int) const
const I_metadata *get_preface () const
bool has_external_essence () const
generic_list *low_level_material ()
const char *operational_pattern () const
bool output_embedded_xml (const char*)
generic_list *output_material ()
bool output_xml (const char *)
const unsigned char* output_xml_buffer (uint64_t&)
bool set_parameter (int, const char *)
bool wait_end_flush_thread ()
bool waiting_stream (I_essence_stream_task *&, unsigned int &)
size_t write (const uint8_t *, size_t)

Constructor and Destructor Documentation

bool NewMxfFileInterface (I_mxf_file **, const char*, mxf_opening_mode)
Retrieves a pointer on an I_mxf_file interface. The second parameter designates the complete path toward the
MXF file to be read. The third parameter defines the opening mode. This value can be changed depending on the
task to undertake with the file:
� METADATA_ONLY: Fastest opening mode but you will only get the first header metadata found while

decoding the file. Depending on the file, this header metadata may be open and/or incomplete. The metadata
should be considered with "caution". You cannot extract media from the file with this mode.

� CLOSED_METADATA_ONLY: Return the best closed header metadata found in the file. The header
metadata can be incomplete, that means all the metadata you get will be valid but some of it might be missing.
You cannot extract media from the file with this mode.

� CLOSED_COMPLETE_METADATA: Return the best header metadata found in the file. This process may
be longer than CLOSED_METADATA_ONLY but you are sure to get valid metadata. You cannot extract
media from the file with this mode.

� METADATA_AND_LINEAR_PLAYOUT: Similar to CLOSED_AND_COMPLETE_METADATA but
also enable extraction of media stored in the file.

� METADATA_AND_RANDOM_ACCESS: Similar to METADATA_AND_LINEAR_PLAYOUT and also
include decoding of index tables enabling faster random access to the media.

 The function returns false if the allocation failed.

bool NewMxfStreamInterface (I_mxf_file **, I_input_mxf_stream_task *)
Retrieves a pointer on an I_mxf_file interface. This function must be called when reading an MXF file received
from a linear streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The I_input_mxf_stream_task

is a class derived by MXFTk user to provide its own implementation to retrieve data from the stream. The key
functions while opening an I_mxf_file with this constructor are end_of_stream() and write(). Returns false if the
allocation failed. Please refer to the “Streaming” chapter for a complete overview of the streaming capabilities of

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

22

MXFTk.

bool NewPartialRestoreMxfFileInterface (I_mxf_file **, const char*, I_timecode*, I_timecode*)
Retrieves a pointer on an I_mxf_file interface and perform a partial restore on the specified MXF file. The second
parameter is the complete path to the MXF file to be partially restored. The following timecode values set the
timecode in and out defining the time span to be retrieved. This function will create the MXF file in memory, in
order to flush it you will need to use one of the flush() functions of I_mxf_file interface.
 This function will retrieve the video, sound and data located between the timecode in (included) and timecode out
(also included). These timecode values correspond to the timecode material of the I_generic_material of the file. It
is not possible to perform a partial restore according to the timecode material of the I_concrete_material. Note
that if the time span defined by the timecode values is not valid an error will be raised. Possible errors may include
an inappropriate frame rate, an invalid drop frame property, etc. Furthermore, if the MXF file contains several
I_generic_material (several material packages), they will be all partially restored according to the same timecode
values. MXFTk will do its best to ensure that the restored file follow the same properties as the original file. It will
keep the properties of partitioning, index tables, kag_size, etc.
Returns false if an error occurred.

bool FreeMxfFileInterface (I_mxf_file **)
Frees an I_mxf_file interface. If the file you provide is an OpAtom file that was parallelized, serialized or
synchronized, calling this function will free all the associated OpAtom files so that you need to call this function
only once. Returns false if the deallocation failed.

bool UpdateAndFreeMxfFileInterface (I_mxf_file **)
Flushes the changes you made to this MXF file (timecode redefinition, metadata update) and frees the I_mxf_file

interface. If the file you provide is an OpAtom file that was synchronized, calling this function will update and free
all the associated OpAtom files so that you need to call this function only once. Returns false if the deallocation
failed.

Member Functions Documentation

concrete_list *embedded_material ()
Gets a list of I_concrete_material. Concrete materials contain all the audiovisual data embedded in the file.
According to the MXF terminology they can also be called “Top Level Source Packages”. The list can be freed at
any time using free_concrete_list().

bool end_of_stream ()
This function is only useful while reading an MXF file from a stream. It must be called by the user in order to notify
MXFTk that the end of the file has been reached and that no more input data will be received from this stream.
Returns false if an error occurred.

bool flush ()

Causes the creation of the MXF file. This function triggers the on-disk writing of the I_mxf_file. The function
launches a thread that will perform the writing. Therefore you should not assume that the flush is completed when
returning from this function. You should always call the function wait_end_flush_thread() to complete the

process. It is safer not to perform any changes to the I_mxf_file while the flush is still processing.
When an I_opatom_file that was assembled thank to an I_opatom_assembler is flushed it is important to
understand that all its linked I_opatom_file will be flushed at the same time. You need to call this function only
once to flush a set of OpAtom files.
Returns false if an error occurred.

bool flush_file (const char *)
Similar to the previous function. Forces the flush to occur at the specified location. This function should be called in
order to flush a partially restored file.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

23

bool flush_thread_cancel ()
Call this function to force the termination of the thread currently running. Returns false if the thread cannot be
terminated. Note that the termination is asynchronous.

double flush_thread_progress ()
Returns the current progress of the flush operation. The returned value is comprised between 0.0 (beginning) and
1.0 (end). You should not rely on this function to know if the thread has terminated, instead use the
flush_thread_running() function.

bool flush_stream (I_output_mxf_stream_task *)
Similar to the previous function. Forces the flush to be launched with the specified streaming interface. This
function should be called in order to flush a partially restored file.

bool flush_thread_running ()
Returns true if a the thread from the flush function is still running, false otherwise.

bool free_concrete_list (concrete_list *)
Frees the list returned by embedded_material(). Returns false if an error occurred.

bool free_generic_list (generic_list *)
Frees the list returned by output_material() or low_level_material(). Returns false if an error occurred.

bool free_identifications (metadata_list *) const
Frees the list returned by get_identifications(). Returns false if an error occurred.

metadata_list *get_identifications () const
Gets a list containing the identification metadata of the current file. This structure draws up the list of modifications
that occurred on this file throughout its lifetime (a new identification set is generated whenever a file is updated).
List’s items hold information such as the date of the latest update as well as the name of the product that performed
it. Please, refer to the MXF File Format glossary [377M] for further detailed information. You may refer to the
function “read_history” from the example “opatom_unwrapper” to get an idea on how to retrieve information from
identification sets. The metadata list can be freed at any time using free_identifications().

const char *get_parameter (int) const
Returns the value of the requested parameter (see set_parameter() for an overview of the parameters). The string
will be set to “unknown” if the value could not be retrieved. The pointer returned must not be destroyed.

const I_metadata *get_preface () const
Returns the Preface set’s metadata. Version, embedded essences and descriptive metadata types are properties of
this preface descriptor. Please refer to the MXF File Format glossary [377M] for a complete overview of its
properties.

bool has_external_essence () const
Returns true if the MXF file contains external references to other MXF or media files. This information is
computed from the operational pattern value.

generic_list *low_level_material ()
Returns a list of I_generic_material. These “low-level” materials are rarely encountered in an MXF file and are
not mandatory. They grant access to an informative history of embedded audiovisual material derivation (for
instance stating the original files used to build the essence). They may contain some descriptive metadata.
According to the MXF terminology, they are also known as “Low Level Source Packages”. The list can be freed at
any time using free_generic_list().

const char *operational_pattern () const
Returns a string identifying the Operational Pattern of this file. Possible values are “Op1a”, “Op1b”, “Op1c”,
“Op2a”, “Op2b”, “Op2c”, “Op3a”, “Op3b”, “Op3c”, ‘OpAtom_1a”, “OpAtom_1b”, “OpAtom_2a”,

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

24

“OpAtom_2b” and “Op_pd_proxy” (for XDcam proxy files). The pointer returned must not be destroyed.

bool output_embedded_xml(const char *)
Returns the XML file embedded within the MXF file (if any). This function is used to retrieve the XML data found
in SONY XDCam files. Most of MXF files do not embed this kind of data; therefore in most cases this function will
be inoperative. Returns false if an error occurred.

generic_list *output_material ()
Gets a list of I_generic_material. These materials contain the play out and editing information of this file.
Nevertheless, they do not embed audiovisual material but instead they reference the I_concrete_material returned
by embedded_material(). According to the MXF terminology, they are also best known as “Material Packages”.
The list can be freed at any time using free_generic_list().

bool output_xml (const char *)
Dumps the content of the current file’s header metadata in an xml file (it includes both descriptive and structural
metadata). Returns false if an error occurred.

bool output_xml_buffer(uint64_t&)
Dumps the content of the current file’s header metadata in a buffer in XML format and sets its size. The XML
buffer includes both descriptive and structural metadata. Returns NULL if an error occurred.

bool set_parameter (int, const char *)
This method can be used to adjust advanced MXF parameters. They are briefly described here but their entire
specification is covered in the MXF File Format glossary [377M]. The returned value indicates whether the new
parameter’s value could be taken into account. Supported parameters are:

1. KAG_SIZE, my_file.set_parameter(KAG_SIZE, "128"); Sets the KAG (KLV Alignment Grid) size to 128

bytes. This alignment grid can be used to ensure a given spacing between each KLV (Key/Length/Value –
elementary constitutive entities of an MXF file). Default value is “512”.

2. HEADER_REPETITION, my_file.set_parameter(HEADER_PARTITION, "2"); Places a new header

metadata every two partitions (even partitions enclose metadata). A nil value (default) only repeats metadata
when properties are updated. Default value is “0”.

3. INDEX_TABLE, my_file.set_parameter(INDEX_TABLE, "True"); Creates an index table for each material

of this file. Default value is “False”.

4. PREFERRED_PARTITION_DURATION,

my_file.set_parameter(PREFERRED_PARTITION_DURATION, "2.0"); Tries to adjust the partitions’ size
so that their duration remains as close as possible from the specified duration (in seconds). MXFTk can not
ensure the accuracy of this size due to structural constraints inherent to the MXF format specification.
Besides, a nil duration “0.0” is interpreted as a complete omission of “body partitions”, only a “header” and a
“footer” partition will be found in such a file ([377M]). Default value is “0.0”.

5. REVERSE_PLAY, my_file.set_parameter(REVERSE_PLAY, “True’); activates the reverse play feature in

the file being generated. Default value is “False”.

These parameters have default values, therefore, calls to the function set_parameter() remain optional.

bool wait_end_flush_thread ()

This function will only when the flush thread has completed. You should always call this function after flushing an
I_mxf_file. It will free the memory allocated by the thread and this will also avoid leaving a program while a thread
is still running.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

25

bool waiting_stream (I_essence_stream_task *&, unsigned int &)
When performing an MXF wrapping in active streaming mode, you may use this function in order to retrieve the
task and stream id that the user should send to MXFTk in order to continue the wrapping process.

size_t write (const uint8_t *, size_t)
This function is only useful while reading an MXF file from a stream. It must be called by the user in order to feed
MXFTk with the data received from the streaming device. The first parameter is the buffer containing the data and
the second parameter is the size of this buffer. The returned value contains the size effectively written.

Related Documentation

enum

Enumeration members:

KAG_SIZE

HEADER_REPETITION

INDEX_TABLE

 PREFERRED_PARTITION_DURATION

 REVERSE_PLAY

This enumeration defines all the advanced parameters over which MXFTk grants access.

enum mxf_opening_mode

Enumeration members:

METADATA_ONLY

CLOSED_METADATA_ONLY

CLOSED_COMPLETE_METADATA

 METADATA_AND_LINEAR_PLAYOUT

 METADATA_AND_RANDOM_ACCESS

This enumeration defines the opening modes available when calling NewMxfFileInterface().

3.2 I_op1a_file Class Reference

#include <I_op1a_file.hpp>

This class should be used in order to create Op1a MXF file. Op1a MXF file contain a single I_concrete_material

played as is.

Public Member Function

I_generic_material *get_current_generic_material ()
bool set_external_material (I_concrete_material *, const wchar_t*)
bool set_material (I_concrete_material *)

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

26

Constructor and Destructor Documentation

 bool NewOp1aFileInterface (I_op1a_file **, const char *)
Retrieves a pointer on an I_op1a_file interface. The second parameter designates the complete path toward the
MXF file to be written upon calling of the flush() function. Returns false if the allocation failed.

 bool NewOpZeroFileInterface (I_op1a_file **, const char *)
Retrieves a pointer on an I_op1a_file interface. The second parameter designates the complete path toward the
MXF file to be written upon calling of the flush() function. OpZero files are a specialization of Op1a files
containing a single video or audio track as well as partitioning properties adjusted to enable play while record.
These files are usually recognized by Omneon servers. Note that the concrete material that will be added to the
op1a (opzero) file should have been wrapped using the opzero wrapping mode. Return false if the allocation failed.

bool NewOp1aStreamInterface (I_op1a_file **, I_output_mxf_stream_task *)

Retrieves a pointer on an I_op1a_file interface. This function must be called when writing an Op1a file on a linear
streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The I_output_mxf_stream_task is a class
derived by MXFTk user to provide its own implementation to feed the streaming device while output data is built
by MXFTk. Return false if the allocation failed. Please refer to the “Streaming” chapter for a complete overview of
the streaming capabilities of MXFTk.

bool NewOpZeroStreamInterface (I_op1a_file **, I_output_mxf_stream_task *)

Retrieves a pointer on an I_op1a_file interface. This function must be called when writing an OpZero file on a
linear streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The I_output_mxf_stream_task is a
class derived by MXFTk user to provide its own implementation to feed the streaming device while output data is
built by MXFTk. OpZero files are a specialization of Op1a files containing a single video or audio track as well as
partitioning properties adjusted to enable play while record. These files are usually recognized by Omneon servers.
Note that the concrete material that will be added to the op1a (opzero) file should have been wrapped using the
opzero wrapping mode. Returns false if the allocation failed. Please refer to the “Streaming” chapter for a complete
overview of the streaming capabilities of MXFTk.

bool FreeOp1aFileInterface (I_op1a_file **)

Frees an I_op1a_file interface. Returns false if the deallocation failed.

Member Function Documentation

 I_generic_material *get_current_generic_material ()
Returns the generic material that was created when calling set_material() or set_external_material(). The
function will return NULL if none of these functions has been called.

 bool set_external_material (I_concrete_material *, const wchar_t *)
Sets an audiovisual material originating from another MXF file to be externally referenced. When calling this
function the referenced MXF file will be added to the list of external references for this Op1a file. The Op1a file
will contain a copy of the concrete material but will not embed the audiovisual material contained in this material.
The second parameter should hold the path toward the referenced MXF file. It can be relative or absolute. However,
you should make sure that the path is correct relatively to the place where the Op1a file will be created. Returns
false if an error occurred.

bool set_material (I_concrete_material *)

Sets an audiovisual material to embed in the Op1a file. This call also causes the automatic generation of the output
material I_generic_material (similar to the I_concrete_material in the context of an Op1a operational pattern)
that can be retrieved thanks to output_material(). Returns false if an error occurred.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

27

3.3 I_evtr_file Class Reference

#include <I_evtr_file.hpp>

This class should be used in order to create Op1a MXF file matching the properties of those generated by SONY eVTR
recording device. It is mandatory to provide IMX video and 8-channel AES audio input to the concrete material in
order to generate MXF files compatible with SONY eVTR. If 8-channel AES audio is not available, it is also possible
to provide WAVE audio and turn on the WrapWaveAsAES8() function.

Constructor and Destructor Documentation

 bool NewEvtrFileInterface (I_evtr_file **, const char *)
Retrieves a pointer on an I_evtr_file interface. The second parameter designates the complete path toward the
MXF file to be written upon calling of the flush() function. Note that the concrete material that will be added to the
evtr file should have been wrapped using the evtr wrapping mode. Returns false if the allocation failed.

bool NewEvtrStreamInterface (I_evtr_file **, I_output_mxf_stream_task *)
Retrieves a pointer on an I_evtr_file interface. This function must be called when writing an eVTR file on a linear
streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The I_output_mxf_stream_task is a class
derived by MXFTk user to provide its own implementation to feed the streaming device while output data is built
by MXFTk. Note that the concrete material that will be added to the evtr file should have been wrapped using the
evtr wrapping mode. Returns false if the allocation failed. Please refer to the “Streaming” chapter for a complete
overview of the streaming capabilities of MXFTk.

bool FreeEvtrFileInterface (I_evtr_file **)
Free an I_evtr_file interface. Return false if the deallocation failed.

3.4 I_xdcam_imx_file Class Reference

#include <I_xdcam_imx_file.hpp>

This class should be used in order to create Op1a MXF file matching the properties of those generated by SONY
XDCam camcorder. It is mandatory to provide IMX video and 8-channel AES audio input to the concrete material in
order to generate MXF files compatible with SONY XDCam. If 8-channel AES audio is not available, it is also
possible to provide WAVE audio and turn on the WrapWaveAsAES8() function.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

28

Constructor and Destructor Documentation

bool NewXdcamImxFileInterface (I_xdcam_imx_file **, const char *)
Retrieves a pointer on an I_xdcam_imx_file interface. The second parameter designates the complete path toward
the MXF file to be written upon calling of the flush() function. Note that the concrete material that will be added to
the evtr file should have been wrapped using the xdcam wrapping mode. Returns false if the allocation failed.

bool NewXdcamImxStreamInterface (I_xdcam_imx_file **, I_output_mxf_stream_task *)
Retrieves a pointer on an I_xdcam_imx_file interface. This function must be called when writing a D10 XDCam
file on a linear streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The
I_output_mxf_stream_task is a class derived by MXFTk user to provide its own implementation to feed the
streaming device while output data is built by MXFTk. Note that the concrete material that will be added to the evtr
file should have been wrapped using the xdcam wrapping mode. Returns false if the allocation failed. Please refer
to the “Streaming” chapter for a complete overview of the streaming capabilities of MXFTk.

bool FreeXdcamImxFileInterface (I_xdcam_imx_file **)
Frees an I_xdcam_imx_file interface. Return false if the deallocation failed.

3.5 I_xdcam_dv_file Class Reference

#include <I_xdcam_dv_file.hpp>

This class should be used in order to create Op1a MXF file matching the properties of those generated by SONY
XDCam camcorder. It is mandatory to provide DV IEC video and four AES audio inputs in order to generate these
files. If AES audio is not available, it is also possible to provide mono WAVE audio and turn on the
WrapWaveAsAES() function.

Constructor and Destructor Documentation

bool NewXdcamDvFileInterface (I_xdcam_dv_file **, const char *)
Retrieves a pointer on an I_xdcam_dv_file interface. The second parameter designates the complete path toward
the MXF file to be written upon calling of the flush() function. Note that the concrete material that will be added to
the evtr file should have been wrapped using the xdcam wrapping mode. Returns false if the allocation failed.

bool NewXdcamDvStreamInterface (I_xdcam_dv_file **, I_output_mxf_stream_task *)
Retrieves a pointer on an I_xdcam_dv_file interface. This function must be called when writing a DV XDCam file
on a linear streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The I_output_mxf_stream_task

is a class derived by MXFTk user to provide its own implementation to feed the streaming device while output data
is built by MXFTk. Note that the concrete material that will be added to the evtr file should have been wrapped
using the xdcam wrapping mode. Returns false if the allocation failed. Please refer to the “Streaming” chapter for a
complete overview of the streaming capabilities of MXFTk.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

29

bool FreeXdcamDvFileInterface (I_xdcam_dv_file **)
Frees an I_xdcam_dv_file interface. Returns false if the deallocation failed.

3.6 I_xdcam_hd_file Class Reference

#include <I_xdcam_hd_file.hpp>

This class should be used in order to create Op1a MXF file matching the properties of those generated by SONY
XDCam HD camcorder. It is mandatory to provide MPEG H-14 or MPEG MP@HL LongGOP video and four AES
audio inputs in order to generate these files. If AES audio is not available, it is also possible to provide mono WAVE
audio and turn on the WrapWaveAsAES() function.

Constructor and Destructor Documentation

bool NewXdcamHdFileInterface (I_xdcam_hd_file **, const char *)
Retrieves a pointer on an I_xdcam_dv_file interface. The second parameter designates the complete path toward
the MXF file to be written upon calling of the flush() function. Note that the concrete material that will be added to
the evtr file should have been wrapped using the xdcam wrapping mode. Returns false if the allocation failed.

bool NewXdcamHdStreamInterface (I_xdcam_hd_file **, I_output_mxf_stream_task *)
Retrieves a pointer on an I_xdcam_hd_file interface. This function must be called when writing a XDCam HD file
on a linear streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The I_output_mxf_stream_task

is a class derived by MXFTk user to provide its own implementation to feed the streaming device while output data
is built by MXFTk. Note that the concrete material that will be added to the evtr file should have been wrapped
using the xdcam wrapping mode. Returns false if the allocation failed. Please refer to the “Streaming” chapter for a
complete overview of the streaming capabilities of MXFTk.

bool FreeXdcamHdFileInterface (I_xdcam_hd_file **)
Frees an I_xdcam_hd_file interface. Returns false if the deallocation failed.

3.7 I_xdcam_proxy_file Class Reference

#include <I_xdcam_proxy_file.hpp>

This class should be used in order to create Op1a MXF file matching the properties of those generated by SONY
XDCam camcorder. It is mandatory to provide MPEG4 video and four 2-channel A-law audio inputs in order to
generate these files. Standardization of the MPEG4 wrapping is not fully specified by the MXF norm; therefore you
should be aware that some MXF decoders may state that XDCam proxy files contain MPEG2 video although they
contain MPEG4 video.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

30

Constructor and Destructor Documentation

bool NewXdcamProxyFileInterface (I_xdcam_proxy_file **, const char *)
Retrieves a pointer on an I_xdcam_dv_file interface. The second parameter designates the complete path toward
the MXF file to be written upon calling of the flush() function. Note that the concrete material that will be added to
the evtr file should have been wrapped using the xdcam wrapping mode. Returns false if the allocation failed.

bool NewXdcamProxyStreamInterface (I_xdcam_proxy_file **, I_output_mxf_stream_task *)
Retrieves a pointer on an I_xdcam_dv_file interface. This function must be called when writing a MPEG4 proxy
XDCam file on a linear streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The
I_output_mxf_stream_task is a class derived by MXFTk user to provide its own implementation to feed the
streaming device while output data is built by MXFTk. Note that the concrete material that will be added to the evtr
file should have been wrapped using the xdcam wrapping mode. Return false if the allocation failed. Please refer to
the “Streaming” chapter for a complete overview of the streaming capabilities of MXFTk.

bool FreeXdcamDvFileInterface (I_xdcam_dv_file **)
Frees an I_xdcam_dv_file interface. Returns false if the deallocation failed.

3.8 I_op1b_file Class Reference

#include <I_op1b_file.hpp>

This class should be used in order to create Op1b MXF file. Op1b MXF files contain several I_concrete_material that
will be played simultaneously. Omneon files with external references are usually built using an Op1b file referencing
raw media files or OpZero MXF files.

Public Member Function

bool add_external_material (I_concrete_material *, const wchar_t *)
bool add_material (I_concrete_material *)
I_generic_material *get_current_generic_material ()

Constructor and Destructor Documentation

 bool NewOp1bFileInterface (I_op1b_file **, const char *)

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

31

Retrieves a pointer on an I_op1b_file interface. The second parameter designates the complete path toward the
MXF file to be written upon calling of the flush() function. Returns false if the allocation failed.

bool NewOp1bStreamInterface (I_op1b_file **, I_output_mxf_stream_task *)
Retrieves a pointer on an I_op1b_file interface. This function must be called when writing an Op1b file on a linear
streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The I_output_mxf_stream_task is a class
derived by MXFTk user to provide its own implementation to feed the streaming device while output data is built
by MXFTk. Returns false if the allocation failed. Please refer to the “Streaming” chapter for a complete overview
of the streaming capabilities of MXFTk.

bool FreeOp1bFileInterface (I_op1b_file **)

Frees an I_op1b_file interface. Returns false if the deallocation failed.

Member Function Documentation

 bool add_external_material (I_concrete_material *, const wchar_t *)
Adds an audiovisual material originating from another MXF file to be externally referenced. When calling this
function the referenced MXF file will be added to the list of external references for this Op1b file. The Op1b file
will contain a copy of the concrete material but will not embed the audiovisual material contained in this material.
There is no limit to the number of I_concrete_material that can be added to an Op1b file. The current output
material will be updated after each call to this function. The second parameter should hold the path toward the
referenced MXF file. It can be relative or absolute. However, you should make sure that the path is correct
relatively to the place where the Op1a file will be created. Returns false if an error occurred.

 bool add_material (I_concrete_material *)

Adds an audiovisual material to embed in the Op1b file. There is no limit to the number of I_concrete_material

that can be added to an Op1b file. This call also causes the automatic generation of the output material
I_generic_material that can be retrieved thanks to output_material(). The output material will be updated after
each call to this function. Returns false if an error occurred.

 I_generic_material *get_current_generic_material ()

Returns the generic material that was created when calling add_material() or add_external_material(). The
function will return NULL if none of these functions has been called.

3.9 I_op1c_file Class Reference

#include <I_op1b_file.hpp>

This class should be used in order to create Op1c MXF file. Op1c MXF files contain several output material
(I_generic_material). Each of them is built as a collection of I_concrete_material’s tracks that will be played
simultaneously. It can be seen as a collection of Op1b files.

Public Member Function

bool add_external_material_track (I_concrete_material *, I_concrete_track *, const wchar_t *)
bool add_material_track (I_concrete_material *, I_concrete_track *)
I_generic_material *get_current_generic_material ()
bool new_generic_material()

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

32

Constructor and Destructor Documentation

 bool NewOp1cFileInterface (I_op1c_file **, const char *)
Retrieves a pointer on an I_op1c_file interface. The second parameter designates the complete path toward the
MXF file to be written upon calling of the flush() function. Returns false if the allocation failed.

bool NewOp1cStreamInterface (I_op1c_file **, I_output_mxf_stream_task *)
Retrieves a pointer on an I_op1c_file interface. This function must be called when writing an Op1c file on a linear
streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The I_output_mxf_stream_task is a class
derived by MXFTk user to provide its own implementation to feed the streaming device while output data is built
by MXFTk. Returns false if the allocation failed. Please refer to the “Streaming” chapter for a complete overview
of the streaming capabilities of MXFTk.

bool FreeOp1cFileInterface (I_op1c_file **)

Frees an I_op1c_file interface. Returns false if the deallocation failed.

Member Function Documentation

bool add_external_material_track (I_concrete_material *, I_concrete_track *, const wchar_t *)
Adds the concrete track of an audiovisual material originating from another MXF file to be externally referenced.
When calling this function the referenced MXF file will be added to the list of external references for this Op1c file.
The Op1c file will contain a copy of the concrete material but will not embed the audiovisual material contained in
this material. The current output material will be updated after each call to this function. The third parameter should
hold the path toward the referenced MXF file. It can be relative or absolute. However, you should make sure that
the path is correct relatively to the place where the Op1c file will be created. Returns false if an error occurred.

bool add_material_track (I_concrete_material *, I_concrete_track *)

Adds the concrete track of an audiovisual material that will be embedded in the Op1c file. The current output
material will be updated after each call to this function. Returns false if an error occurred.

bool new_generic_material (I_concrete_material *)

Creates a new generic material that will be added to the list of output material. All the following calls to
add_material_track() and add_external_material_track() will add an output track to the newly created generic
material. Returns false if an error occurred.

 I_generic_material *get_current_generic_material ()

Returns the generic material that was created when calling new_generic_material(). You should always call this
function after calling add_material_track() or add_external_material_track() in order to manipulate a valid
material. You should never work on previous instances of a material returned by this function. The function will
return NULL if there is no generic material currently defined in the file.

3.10 I_op2a_file Class Reference

#include <I_op2a_file.hpp>

This class should be used in order to create Op2a MXF files. Op2a MXF files contain several I_concrete_material

that will be played sequentially.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

33

Public Member Function

bool add_external_material (I_concrete_material *, const wchar_t *)
bool add_material (I_concrete_material *)
I_generic_material *get_current_generic_material ()
bool set_continuous_decoding (bool)

Constructor and Destructor Documentation

 bool NewOp2aFileInterface (I_op2a_file **, const char *)
Retrieves a pointer on an I_op2a_file interface. The second parameter designates the complete path toward the
MXF file to be written upon calling of the flush() function. Returns false if the allocation failed.

bool NewOp2aStreamInterface (I_op2a_file **, I_output_mxf_stream_task *)
Retrieves a pointer on an I_op2a_file interface. This function must be called when writing an Op2a file on a linear
streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The I_output_mxf_stream_task is a class
derived by MXFTk user to provide its own implementation to feed the streaming device while output data is built
by MXFTk. Returns false if the allocation failed. Please refer to the “Streaming” chapter for a complete overview
of the streaming capabilities of MXFTk.

bool FreeOp2aFileInterface (I_op2a_file **)

Frees an I_op2a_file interface. Returns false if the deallocation failed.

Member Function Documentation

 bool add_external_material (I_concrete_material *, const wchar_t *)
Adds an audiovisual originating from another MXF file to be externally referenced. When calling this function the
referenced MXF file will be added to the list of external references for this Op2a file. The Op2a file will contain a
copy of the concrete material but will not embed the audiovisual material contained in this material. There is no
limit to the number of I_concrete_material that can be added to an Op2a file. The current output material will be
updated after each call to this function. The second parameter should hold the path toward the referenced MXF file.
It can be relative or absolute. However, you should make sure that the path is correct relatively to the place where
the Op2a file will be created. Returns false if an error occurred.

 bool add_material (I_concrete_material *)
Adds an audiovisual material to embed in the Op2a file. There is no limit to the number of I_concrete_material

that can be added to an Op2a file. The current output material will be updated after each call to this function.
Returns false if an error occurred.

I_generic_material *get_current_generic_material ()
Returns the generic material that was created when calling add_material() or add_external_material(). The
function will return NULL if none of these functions has been called.

bool set_continuous_decoding (bool)
You should call this function to tell MXFTk if the concrete material added to the file can be continuously decoded.
“Continuous decoding” means that no special processing is required at the junction of the concrete material being
played. The following examples of files do not allow a continuous decoding:

• A DV source followed by a MPEG source.

• A mono WAVE source followed by a stereo WAVE source.

• Two MPEG Long GOP sources cut so that a MPEG decoder will not be able to decode some of the frames.
 Return false if an error occurred.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

34

3.11 I_op2b_file Class Reference

#include <I_op2b_file.hpp>

This class should be used in order to create Op2b MXF files. Op2b MXF files contain several sets of
I_concrete_material played simultaneously. The sets are then played sequentially. This is a combination of the
operational pattern 1b and 2a.

Public Member Function

bool add_external_material(I_concrete_material *, const wchar_t *)
bool add_material (I_concrete_material *)
I_generic_material *get_current_generic_material ()
bool new_multiplexed_material ()
bool set_continuous_decoding (bool)

Constructor and Destructor Documentation

 bool NewOp2bFileInterface (I_op2b_file **, const char *)
Retrieves a pointer on an I_op2b_file interface. The second parameter designates the complete path toward the
MXF file to be written upon calling of the flush() function. Returns false if the allocation failed.

bool NewOp2bStreamInterface (I_op2b_file **, I_output_mxf_stream_task *)
Retrieves a pointer on an I_op2b_file interface. This function must be called when writing an Op2b file on a linear
streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The I_output_mxf_stream_task is a class
derived by MXFTk user to provide its own implementation to feed the streaming device while output data is built
by MXFTk. Returns false if the allocation failed. Please refer to the “Streaming” chapter for a complete overview
of the streaming capabilities of MXFTk.

bool FreeOp2bFileInterface (I_op2b_file **)

Frees an I_op2b_file interface. Returns false if the deallocation failed.

Member Function Documentation

 bool add_external_material (I_concrete_material *, const wchar_t *)
Adds an audiovisual material originating from another MXF file to be externally referenced. When calling this
function the referenced MXF file will be added to the list of external references for this Op2b file. The Op2b file
will contain a copy of the concrete material but will not embed the audiovisual material contained in this material.
There is no limit to the number of I_concrete_material that can be added to an Op2b file. The current output
material will be updated after each call to this function. The second parameter should hold the path toward the
referenced MXF file. It can be relative or absolute. However, you should make sure that the path is correct
relatively to the place where the Op1a file will be created. Returns false if an error occurred.

bool add_material (I_concrete_material *)

Adds an audiovisual material to embed in the Op2b file. It is added to the current set of multiplexed material. There
is no limit to the number of I_concrete_material that can be added to an Op2b file. The current output material will
be updated after each call to this function. Returns false if an error occurred.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

35

 bool new_multiplexed_material ()
Notify to MXFTk that the next concrete material added to this file will be in a new set of ganged material. For
instance, in order to create the following Op2b file where A, B, C, D, E and F designate concrete material you
should perform the following calls:
Output Material:
Track1: A followed by B followed by C
Track2: D followed by E followed by F
MXFTk calls:
new_multiplexed_material()
add_material(A)
add_material(D)
new_multiplexed_material()
add_material(B)
add_material(E)
new_multiplexed_material()
add_material(C)
add_material(F)

I_generic_material *get_current_generic_material ()
Returns the generic material that was created when calling add_material() or add_external_material(). The
function will return NULL if none of these functions has been called.

bool set_continuous_decoding (bool)
You should call this function to tell MXFTk if the concrete material added to the file can be continuously decoded.
“Continuous decoding” means that no special processing is required at the junction of the concrete material being
played. The following examples of files do not allow a continuous decoding:

• A DV source followed by a MPEG source.

• A mono WAVE source followed by a stereo WAVE source.

• Two MPEG Long GOP sources cut so that a MPEG decoder will not be able to decode some of the frames.
 Returns false if an error occurred.

3.12 I_op2c_file Class Reference

#include <I_op2c_file.hpp>

This class should be used in order to create Op2c MXF files. Op2c MXF files contain several output material
(I_generic_material). Each of them contains several sets of I_concrete_material played simultaneously. The sets are
then played sequentially. It can be seen as a collection of Op2b files.

Public Member Function

bool add_external_material_track(I_concrete_material *, I_concrete_track *, const wchar_t *)
bool add_material_track (I_concrete_material *, I_concrete_track *)
I_generic_material *get_current_generic_material ()
bool new_generic_material ()
bool new_multiplexed_track ()
bool set_continuous_decoding (bool)

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

36

Constructor and Destructor Documentation

 bool NewOp2cFileInterface (I_op2c_file **, const char *)
Retrieves a pointer on an I_op2c_file interface. The second parameter designates the complete path toward the
MXF file to be written upon calling of the flush() function. Returns false if the allocation failed.

bool NewOp2cStreamInterface (I_op2c_file **, I_output_mxf_stream_task *)
Retrieves a pointer on an I_op2c_file interface. This function must be called when writing an Op2c file on a linear
streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The I_output_mxf_stream_task is a class
derived by MXFTk user to provide its own implementation to feed the streaming device while output data is built
by MXFTk. Returns false if the allocation failed. Please refer to the “Streaming” chapter for a complete overview
of the streaming capabilities of MXFTk.

bool FreeOp2cFileInterface (I_op2c_file **)

Frees an I_op2c_file interface. Returns false if the deallocation failed.

Member Function Documentation

bool add_external_material_track (I_concrete_material *, I_concrete_track *, const wchar_t *)
Adds the concrete track of an audiovisual material originating from another MXF file to be externally referenced.
When calling this function the referenced MXF file will be added to the list of external references for this Op2c file.
The Op2c file will contain a copy of the concrete material but will not embed the audiovisual material contained in
this material. The current output material will be updated after each call to this function. The third parameter should
hold the path toward the referenced MXF file. It can be relative or absolute. However, you should make sure that
the path is correct relatively to the place where the Op2c file will be created. Returns false if an error occurred.

bool add_material_track (I_concrete_material *, I_concrete_track *)

Adds the concrete track of an audiovisual material that will be embedded in the Op2c file. The current output
material will be updated after each call to this function. Returns false if an error occurred.

bool new_generic_material ()

Creates a new generic material that will be added to the list of output material. All the following calls to
add_material_track() and add_external_material_track() will add an output track to the newly created generic
material. Returns false if an error occurred.

 I_generic_material *get_current_generic_material ()

Returns the generic material that was created when calling new_generic_material(). You should always call this
function after calling add_material_track() or add_external_material_track() in order to manipulate a valid
material. You should never work on previous instances of a material returned by this function. The function will
return NULL if there is no generic material currently defined in the file.

 bool new_multiplexed_track ()
Notifies MXFTk that the next concrete material added to this file will be in a new set of ganged material. For
instance, in order to create the following Op2c generic material where A, B, C, D, E and F designate concrete tracks
you should perform the following calls:
Output Material:
Track1: A followed by B followed by C
Track2: D followed by E followed by F
MXFTk calls:
new_generic_material()
new_multiplexed_track()
add_material_track(A)
add_material_track(D)
new_multiplexed_track()
add_material_track(B)
add_material_track(E)

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

37

new_multiplexed_track()
add_material_track(C)
add_material_track(F)

The process is repeated for each output material to be created.

bool set_continuous_decoding (bool)

You should call this function to tell MXFTk if the concrete material added to the file can be continuously decoded.
“Continuous decoding” means that no special processing is required at the junction of the concrete material being
played. The following examples of files do not allow a continuous decoding:

• A DV source followed by a MPEG source.

• A mono WAVE source followed by a stereo WAVE source.

• Two MPEG Long GOP sources cut so that a MPEG decoder will not be able to decode some of the frames.
 Returns false if an error occurred.

3.13 I_op3a_file Class Reference

#include <I_op3a_file.hpp>

This class should be used in order to create Op3a MXF files. Op3a MXF files contain several tracks cut from various
I_concrete_material’s tracks that will be played sequentially.

Public Member Function

bool add_external_material (I_concrete_material *, I_timecode *, I_timecode *, const wchar_t *)
bool add_material (I_concrete_material *, I_timecode *, I_timecode *)
I_generic_material *get_current_generic_material ()
bool set_continuous_decoding (bool)

Constructor and Destructor Documentation

 bool NewOp3aFileInterface (I_op3a_file **, const char *)
Retrieves a pointer on an I_op3a_file interface. The second parameter designates the complete path toward the
MXF file to be written upon calling of the flush() function. Returns false if the allocation failed.

bool NewOp3aStreamInterface (I_op3a_file **, I_output_mxf_stream_task *)
Retrieves a pointer on an I_op3a_file interface. This function must be called when writing an Op3a file on a linear
streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The I_output_mxf_stream_task is a class
derived by MXFTk user to provide its own implementation to feed the streaming device while output data is built
by MXFTk. Returns false if the allocation failed. Please refer to the “Streaming” chapter for a complete overview
of the streaming capabilities of MXFTk.

bool FreeOp3aFileInterface (I_op3a_file **)

Frees an I_op3a_file interface. Returns false if the deallocation failed.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

38

Member Function Documentation

 bool add_external_material (I_concrete_material *, I_timecode *, I_timecode *, const wchar_t *)
Adds an audiovisual originating from another MXF file to be externally referenced. When calling this function the
referenced MXF file will be added to the list of external references for this Op3a file. The Op3a file will contain a
copy of the concrete material but will not embed the audiovisual material contained in this material. There is no
limit to the number of I_concrete_material that can be added to an Op3a file. The current output material will be
updated after each call to this function. The second and third parameters define the portion of the concrete
material’s tracks that will be appended to the generic material. The time code values should be expressed relatively
to the time code track of the concrete material. All the tracks from the concrete material will be considered. The
fourth parameter should hold the path toward the referenced MXF file. It can be relative or absolute. However, you
should make sure that the path is correct relatively to the place where the Op3a file will be created. Returns false if
an error occurred.

 bool add_material (I_concrete_material *, I_timecode *, I_timecode *)
Adds an audiovisual material to embed in the Op2a file. There is no limit to the number of I_concrete_material

that can be added to an Op3a file. The current output material will be updated after each call to this function. The
second and third parameters define the portion of the concrete material’s tracks that will be appended to the generic
material. The time code values should be expressed relatively to the time code track of the concrete material. All the
tracks from the concrete material will be considered. Returns false if an error occurred.

I_generic_material *get_current_generic_material ()
Returns the generic material that was created when calling add_material() or add_external_material(). The
function will return NULL if none of these functions has been called.

bool set_continuous_decoding (bool)
You should call this function to tell MXFTk if the concrete material added to the file can be continuously decoded.
“Continuous decoding” means that no special processing is required at the junction of the concrete material being
played. The following examples of files do not allow a continuous decoding:

• A DV source followed by a MPEG source.

• A mono WAVE source followed by a stereo WAVE source.

• Two MPEG Long GOP sources cut so that a MPEG decoder will not be able to decode some of the frames.
 Returns false if an error occurred.

3.14 I_op3b_file Class Reference

#include <I_op3b_file.hpp>

This class should be used in order to create Op3b MXF files. Op3b MXF files contain several sets of tracks (cut from
various I_concrete_material’s tracks) played simultaneously. The sets are then played sequentially.

Public Member Function

bool add_external_material_track (I_concrete_material *, I_concrete_track *, I_timecode *,
I_timecode *, const wchar_t *)

bool add_material_track (I_concrete_material *, I_concrete_track *, I_timecode *, I_timecode *)
I_generic_material *get_current_generic_material ()
bool new_generic_material_track ()
bool set_continuous_decoding (bool)

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

39

Constructor and Destructor Documentation

 bool NewOp3bFileInterface (I_op3b_file **, const char *)
Retrieves a pointer on an I_op3b_file interface. The second parameter designates the complete path toward the
MXF file to be written upon calling of the flush() function. Returns false if the allocation failed.

bool NewOp3bStreamInterface (I_op3b_file **, I_output_mxf_stream_task *)
Retrieves a pointer on an I_op3b_file interface. This function must be called when writing an Op3b file on a linear
streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The I_output_mxf_stream_task is a class
derived by MXFTk user to provide its own implementation to feed the streaming device while output data is built
by MXFTk. Returns false if the allocation failed. Please refer to the “Streaming” chapter for a complete overview
of the streaming capabilities of MXFTk.

bool FreeOp3bFileInterface (I_op3b_file **)

Frees an I_op3b_file interface. Returns false if the deallocation failed.

Member Function Documentation

 bool add_external_material_track (I_concrete_material *, I_concrete_track *, I_timecode *,
I_timecode *, const wchar_t *)

Adds the concrete track of an audiovisual material originating from another MXF file to be externally referenced.
When calling this function the referenced MXF file will be added to the list of external references for this Op3b file.
The Op3b file will contain a copy of the concrete material but will not embed the audiovisual material contained in
this material. There is no limit to the number of I_concrete_material that can be added to an Op3b file. The current
output material will be updated after each call to this function. The third and fourth parameters define the portion of
the concrete material’s track that will be appended to the generic material. The time code values should be
expressed relatively to the time code track of the concrete material. The fifth parameter should hold the path toward
the referenced MXF file. It can be relative or absolute. However, you should make sure that the path is correct
relatively to the place where the Op1a file will be created. Returns false if an error occurred.

bool add_material_track (I_concrete_material *, I_concrete_track *, I_timecode *, I_timecode *)

Adds the concrete track of an audiovisual material to embed in the Op3b file. It is added to the current set of
multiplexed material. There is no limit to the number of I_concrete_material that can be added to an Op3b file.
The current output material will be updated after each call to this function. The third and fourth parameters define
the portion of the concrete material’s track that will be appended to the generic material. The time code values
should be expressed relatively to the time code track of the concrete material. Returns false if an error occurred.

I_generic_material *get_current_generic_material ()
Returns the generic material that was created when calling add_material_track() or
add_external_material_track(). The function will return NULL if none of these functions has been called.

 bool new_generic_material_track ()
Notifies MXFTk that a new track should be created for the current generic material. The next portions of concrete
material’s tracks will be added to this new track. For instance, in order to create the following Op3b file where A, B,
C, D, E and F designate concrete material tracks you should perform the following calls:
Output Material:
Track1: A[tc_inA, tc_outA] followed by B[tc_inB, tc_outB] followed by C[tc_inC, tc_outC]
Track2: D[tc_inD, tc_outD] followed by E[tc_inE, tc_outE] followed by F[tc_inF, tc_outF]
MXFTk calls:
new_generic_material_track()
add_material_track(A, tcin_A, tcout_A)
add_material_track(B, tcin_B, tcout_B)
add_material_track(C, tcin_C, tcout_C)
new_generic_material_track()

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

40

add_material_track(D, tcin_D, tcout_D)
add_material_track(E, tcin_E, tcout_E)
add_material_track(F, tcin_F, tcout_F)

bool set_continuous_decoding (bool)

You should call this function to tell MXFTk if the concrete material added to the file can be continuously decoded.
“Continuous decoding” means that no special processing is required at the junction of the concrete material being
played. The following examples of files do not allow a continuous decoding:

• A DV source followed by a MPEG source.

• A mono WAVE source followed by a stereo WAVE source.

• Two MPEG Long GOP sources cut so that a MPEG decoder will not be able to decode some of the frames.
 Returns false if an error occurred.

3.15 I_op3c_file Class Reference

#include <I_op3c_file.hpp>

This class should be used in order to create Op3c MXF files. Op3c MXF files contain several output material
(I_generic_material). Each of them contains several sets of tracks (cut from I_concrete_material’s tracks) played
simultaneously. The sets are then played sequentially. It can be seen as a collection of Op3b files.

Public Member Function

bool add_external_material_track(I_concrete_material *, I_concrete_track *, I_timecode *,
I_timecode *, const wchar_t *)

bool add_material_track (I_concrete_material *, I_concrete_track *, I_timecode *, I_timecode *)
I_generic_material *get_current_generic_material ()
bool new_generic_material ()
bool new_generic_material_track ()
bool set_continuous_decoding (bool)

Constructor and Destructor Documentation

 bool NewOp3cFileInterface (I_op3c_file **, const char *)
Retrieves a pointer on an I_op3c_file interface. The second parameter designates the complete path toward the
MXF file to be written upon calling of the flush() function. Returns false if the allocation failed.

bool NewOp3cStreamInterface (I_op3c_file **, I_output_mxf_stream_task *)
Retrieves a pointer on an I_op3c_file interface. This function must be called when writing an Op3c file on a linear
streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The I_output_mxf_stream_task is a class
derived by MXFTk user to provide its own implementation to feed the streaming device while output data is built
by MXFTk. Returns false if the allocation failed. Please refer to the “Streaming” chapter for a complete overview
of the streaming capabilities of MXFTk.

bool FreeOp3cFileInterface (I_op3c_file **)

Frees an I_op3c_file interface. Returns false if the deallocation failed.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

41

Member Function Documentation

bool add_external_material_track (I_concrete_material *, I_concrete_track *, I_timecode *,
I_timecode *, const wchar_t *)

Adds the concrete track of an audiovisual material originating from another MXF file to be externally referenced.
When calling this function the referenced MXF file will be added to the list of external references for this Op3c file.
The Op3c file will contain a copy of the concrete material but will not embed the audiovisual material contained in
this material. The current output material will be updated after each call to this function. The third and fourth
parameters define the portion of the concrete material’s track that will be appended to the generic material. The
time code values should be expressed relatively to the time code track of the concrete material. The fifth parameter
should hold the path toward the referenced MXF file. It can be relative or absolute. However, you should make sure
that the path is correct relatively to the place where the Op2c file will be created. Returns false if an error occurred.

bool add_material_track (I_concrete_material *, I_concrete_track *, I_timecode *, I_timecode *)

Adds the concrete track of an audiovisual material that will be embedded in the Op2c file. The current output
material will be updated after each call to this function. The third and fourth parameters define the portion of the
concrete material’s track that will be appended to the generic material. The time code values should be expressed
relatively to the time code track of the concrete material. Returns false if an error occurred.

 I_generic_material *get_current_generic_material ()

Returns the generic material that was created when calling new_generic_material(). You should always call this
function after calling add_material_track() or add_external_material_track() in order to manipulate a valid
material. You should never work on previous instances of a material returned by this function. The function will
return NULL if there is no generic material currently defined in the file.

bool new_generic_material ()

Creates a new generic material that will be added to the list of output material. All the following calls to
new_generic_material_track() will add an output track to the newly created generic material. Returns false if an
error occurred.

 bool new_generic_material_track ()
Notifies MXFTk that a new track should be created for the current generic material. The next portions of concrete
material’s tracks will be added to this new track. For instance, in order to create the following Op3b file where A, B,
C, D, E and F designate concrete material tracks you should perform the following calls:
Output Material:
Track1: A[tc_inA, tc_outA] followed by B[tc_inB, tc_outB] followed by C[tc_inC, tc_outC]
Track2: D[tc_inD, tc_outD] followed by E[tc_inE, tc_outE] followed by F[tc_inF, tc_outF]
MXFTk calls:
new_generic_material()
new_generic_material_track()
add_material_track(A, tcin_A, tcout_A)
add_material_track(B, tcin_B, tcout_B)
add_material_track(C, tcin_C, tcout_C)
new_generic_material_track()
add_material_track(D, tcin_D, tcout_D)
add_material_track(E, tcin_E, tcout_E)
add_material_track(F, tcin_F, tcout_F)

The process is repeated for each output material to be created.

bool set_continuous_decoding (bool)

You should call this function to tell MXFTk if the concrete material added to the file can be continuously decoded.
“Continuous decoding” means that no special processing is required at the junction of the concrete material being
played. The following examples of files do not allow a continuous decoding:

• A DV source followed by a MPEG source.

• A mono WAVE source followed by a stereo WAVE source.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

42

• Two MPEG Long GOP sources cut so that a MPEG decoder will not be able to decode some of the frames.
 Return false if an error occurred.

3.16 I_opatom_file Class Reference

#include <I_opatom_file.hpp>

This class should be used in order to create OpAtom MXF files.

Public Member Function

I_umid *get_concrete_material_umid () const
bool set_material (I_concrete_material *)

Constructor and Destructor Documentation

 bool NewOpAtomFileInterface (I_opatom_file **, const char *)
Retrieves a pointer on an I_opatom_file interface. The second parameter designates the complete path toward the
MXF file to be written upon calling of the flush() function. Returns false if the allocation failed.

bool NewOpAtomStreamInterface (I_opatom_file **, I_output_mxf_stream_task *)
Retrieves a pointer on an I_opatom_file interface. This function must be called when writing an OpAtom file on a
linear streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The I_output_mxf_stream_task is a
class derived by MXFTk user to provide its own implementation to feed the streaming device while output data is
built by MXFTk. Returns false if the allocation failed. Please refer to the “Streaming” chapter for a complete
overview of the streaming capabilities of MXFTk.

bool NewDcpOpAtomFileInterface (I_opatom_file **, const char *)

Retrieves a pointer on an I_opatom_file interface. The second parameter designates the complete path toward the
MXF file to be written upon calling of the flush() function. Return false if the allocation failed
Builds SMPTE429 OpAtom files for Digital Cinema Package(DCP).

bool NewDcpOpAtomStreamInterface (I_opatom_file **, I_output_mxf_stream_task *)
Retrieves a pointer on an I_opatom_file interface. This function must be called when writing an OpAtom file on a
linear streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The I_output_mxf_stream_task is a
class derived by MXFTk user to provide its own implementation to feed the streaming device while output data is
built by MXFTk. Return false if the allocation failed. Please refer to the “Streaming” chapter for a complete
overview of the streaming capabilities of MXFTk.
Builds SMPTE429 OpAtom files for Digital Cinema Package(DCP).

bool FreeOpAtomFileInterface (I_opatom_file **)

Frees an I_opatom_file interface. Returns false if the deallocation failed.

Member Function Documentation

I_umid* get_concrete_material_umid () const

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

43

Returns the Unique Material Identifier of the audiovisual material embedded in this OpAtom file. This is the same
UMID as the one returned by I_concrete_material::get_umid(). This UMID is used to link OpAtom files meant
to be played together. Therefore, the function get_umid() is repeated here for the user’s convenience.

bool set_material (I_concrete_material *)
Sets an audiovisual material to embed in the OpAtom file. This call also causes the automatic generation of the
output material I_generic_material that can be retrieved thanks to output_material(). Due to the nature of
OpAtom files, concrete material containing more than one audiovisual track will not be accepted. Returns false if
an error occurred.

3.17 I_dcp1_file Class Reference

#include <I_dcp1_file.hpp>

This class should be used in order to create OpAtom Digital Cinema Package MXF files compatible with Doremi and
Dolby D-Cinema servers.

Constructor and Destructor Documentation

 bool NewDcp1FileInterface (I_dcp1_file **, const char *)
Retrieves a pointer on an I_dcp1_file interface. The second parameter designates the complete path toward the
MXF file to be written upon calling of the flush() function. Returns false if the allocation failed.

bool NewDcp1StreamInterface (I_dcp1_file **, I_output_mxf_stream_task *)
Retrieves a pointer on an I_dcp1_file interface. This function must be called when writing an OpAtom file on a
linear streaming device (e.g. a videotape recorder, an IEEE1394 port, etc.). The I_output_mxf_stream_task is a
class derived by MXFTk user to provide its own implementation to feed the streaming device while output data is
built by MXFTk. Returns false if the allocation failed. Please refer to the “Streaming” chapter for a complete
overview of the streaming capabilities of MXFTk.

bool FreeDcp1FileInterface (I_dcp1_file **)

Frees an I_dcp1_file interface. Returns false if the deallocation failed.

3.18 I_opatom_assembler Class Reference

#include <I_opatom_file.hpp>

This class lets you manipulate OpAtom files altogether. While creating OpAtom files it enables to build complex
editing by parallelizing or serializing OpAtom files. Linked OpAtom files share the same I_generic_material that
references I_concrete_material from several I_opatom_file.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

44

Public Member Functions

bool parallelize (I_opatom_file *, I_opatom_file *)
bool serialize (I_opatom_file *, I_opatom_file *)
bool synchronize (mxf_file_list *)

Constructor and Destructor Documentation

bool NewOpAtomAssemblerInterface (I_opatom_assembler **)
Retrieves a pointer on an I_opatom_assembler interface. Returns false if the allocation failed.

bool FreeOpAtomAssemblerInterface (I_opatom_assembler **)

Frees an I_opatom_assembler interface. Returns false if the deallocation failed.

Member Functions Documentation

bool parallelize (I_opatom_file *, I_opatom_file *)
This function is used when creating OpAtom files. It links I_opatom files so that they will be played together when
they will be read back. If we define // as the symbol for calling the parallelize() function, then file1//file2 and then
file2//file3 will cause the three OpAtom files to be played together. Once two OpAtom files are parallelized they
share the same I_generic_material and represent the same editing. Similarly, doing file1//file2 and file3//file4 and
then finally file1//file3 will cause the four files to be played simultaneously and share the same
I_generic_material. The function will return false if an error occurred.

bool serialize (I_opatom_file *, I_opatom_file *)
This function is used when creating OpAtom files. It links I_opatom files so that they will be played one after the
other. If we define + as the symbol for calling the serialize() function, then file1+file2 and then file2+file3 will
cause the three OpAtom files to be played in a sequence file1->file2->file3. Once two OpAtom files are serialized
they share the same I_generic_material and represent the same editing. Similarly, doing file1+file2 and file1+file3
and then finally file1+file4 will cause the four files to be played in a sequence and share the same
I_generic_material. When serializing files you must ensure that their I_generic_material share the same track
structure (i.e. you can not serialize a video-only OpAtom file with a sound-only OpAtom file). The generic material
of each OpAtom files being serialized must contain exactly the same number of video track, audio track, data track
and metadata track. The function will return false if an error occurred.

A note about parallelize() and serialize():

We provide here an example of editing with OpAtom files. You may also refer to the example “opatom_wrapper”
from your installation directory.

Performing
Audio_file1//Video_file2 then,
Audio_file3//Video_file4 then,
Audio_file1+Audio_file3 will produce an I_generic_material with two tracks:

Audio Track: embedded audio from file1 followed by embedded audio from file2.
Video Track: embedded video from file2 followed by embedded video from file4.

It corresponds to the editing of an operational pattern 2b. Therefore the four OpAtom files are OpAtom_2b files
sharing the same generic material.

Furthermore performing
Audio_file1+Audio_file3 then,
Video_file2+Video_file4 then,
Audio_file1//Video_file2 would have produced exactly the same result.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

45

bool synchronize (mxf_file_list *)
This function is used when reading OpAtom files. The user should provide a list of I_opatom_file that share the
same editing. The call to this function will ensure the correct linkage between I_concrete_material of each
OpAtom file. It enables the I_generic_material of each file to access seamlessly all the I_concrete_material as if
they were in the same file. For instance let’s assume we have two OpAtom_1b files and that the
I_generic_material from file1 uses the video track stored in the I_concrete_material of file2. Before
synchronization, the file1 has no reference on the file2 and therefore its I_generic_material can not playback the
video. However after synchronizing both files, the same I_generic_material from file1 will become able to
playback the video. You may refer to the example “opatom_unwrapper” that provides a sample code for
synchronizing any editing of OpAtom files. Trying to synchronize files that are not related will cause an error.

3.19 Panasonic P2 Functions Reference

#include <I_opatom_file.hpp>

bool BuildP2XML (const char*)

This function builds the P2 XML file stored in the Clip directory from a P2 video file. The first parameter should
contain the complete path to this P2 file and it should be in its P2 directory structure (Contents/Video) and all its
associated audio files must be in their directory (Contents/Audio). This function is intended to be used in order to
rebuild the XML clip after performing a partial restore on a set of P2 files. The function returns false if an error
occurred.

bool BuildP2XMLBuffer (I_mxf_file*, const char*, size_t*, unsigned char*)

This function builds the P2 XML file usually stored in the Clip directory from a P2 video file. The first parameter
should reference a P2 file already linked to its associated P2 files thanks to opatom_assembler. The second
parameter contains the base name of this set of P2 files. Finally the XLM will be written in the unsigned char*
buffer and its size will be set in the size_t* parameter. This function is similar to BuildP2XML() however it is
convenient when you do not have access to the on-disk P2 files. Returns false if an error occurred.

bool CancelNewP2Shot ()
Cancels the P2 creation thread currently running. This call is asynchronous so the thread is not necessarily
terminated when exiting this function. Returns false if an error occurred.

bool NewP2Shot (locators*, const char*, const char*, I_timecode*, I_umid*)
This function should be used in order to create OpAtom MXF files matching the properties of those generated by
Panasonic P2 camcorder. The first parameter is the list of path to the source files to be wrapped (this should be a
DVCPro 25 or 50 along with two or four 2-channel AES/WAVE audio inputs). The second parameter is the path to
the output directory. The third parameter is the base name for the files being generated and it must be strictly 6
characters long. Finally the two last optional parameters let you specify the starting timecode and the UMID of the
sequence being generated. If you do not set these parameters, MXFTk will generate default ones for you.
This function will build a directory containing three or five Opatom files as well as an XML file. It corresponds to
the structure found on P2 cards.
It will launch a thread so you need to call the function WaitEndNewP2Shot() to make sure the creation process is
completed.
Returns false if an error occurred.

bool NewP2ShotFromStream (I_essence_stream_task*, I_essence_stream_task*,
I_essence_stream_task*, I_essence_stream_task*, I_essence_stream_task*, const char*, const
char*, I_timecode*, I_umid*)

This function should be used in order to create OpAtom MXF files matching the properties of those generated by
Panasonic P2 camcorder. This function should be called when working in a streaming environment. The first
parameter is the streaming interface that will be used to manipulate the DVCPro 25 or 50 stream. The four
following I_essence_stream_task will be used to define the AES/WAVE streams. The second parameter is the path
to the output directory. The third parameter is the base name for the files being generated and it must be strictly 6

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

46

characters long. Finally the two last optional parameters let you specify the starting timecode and the UMID of the
sequence being generated. If you do not set these parameters, MXFTk will generate default ones for you.
This function will build a directory containing three or five Opatom files as well as an XML file. This corresponds
to the structure found on P2 cards.
It will launch a thread so you need to call the function WaitEndNewP2Shot() to make sure the creation process is
completed.
Returns false if an error occurred.

double ProgressNewP2Shot ()
Returns the current progress of the P2 creation thread. The returned value is comprised between 0.0 (beginning)
and 1.0 (end). You should not rely on this function to know if the thread has terminated.

bool WaitEndNewP2Shot ()
This function waits for the completion of the process launched by NewP2Shot() or NewP2ShotFromStream().
You should always call this function to ensure thread termination.
The function returns false if an error occurred.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

47

4. Material
Two families of materials can be distinguished. On one side, we can find the concrete materials and on the other one
the virtual materials. Concrete materials grant access to the audiovisual data (a clip in a given format) whereas virtual
materials provide tools to manage the edition of the concrete materials, as well as their metadata and timecode.

TAB. 3: Materials

concrete Virtual

I_concrete_material I_metadata_material

 I_timecode_material

 I_generic_material

As seen in the preliminaries of this user guide, a material contains a given number of tracks. These tracks are used to
spot the nature of the data held by this material (video, audio, data or metadata).
In the following sections, we will first go through the classes I_generic_material and I_track (representing editing
information), then we will examine the concrete material classes I_concrete_material and I_concrete_track

(representing audiovisual material) and finally we will conclude with the metadata material I_metadata_material and
timecode specification I_timecode_material.
“Edit unit” is mentioned several times in this user guide. According to the MXF terminology, an “edit unit” is the
indivisible unit of an MXF track (generally set to a frame or a field on a video track). It is the smallest addressable data
unit of a track.

4.1 I_generic_material Class Reference

#include <I_generic_material.hpp>

This class describes an edition of the embedded material. Therefore, such a material is the play out of the mxf_file. It
contains references to audiovisual sources but does not contain essence data or tools to access to the binary data.
Generic materials have a UMID (SMPTE Unique Material Identifier, see [330M]). MXFTk user can set its value after
creating the material or leave the default one automatically set by the API.

Public Member Functions

bool delete_metadata_track (I_track *)
bool free_tracks (track_list *)
const wchar_t *get_material_name (size_t &) const
I_timecode_material *get_timecode () const
I_umid *get_umid () const
track_list *metadata_tracks ()
I_track *new_metadata_track (track_type, int64_t, rational *)
I_track *new_stream_metadata_track (I_input_metadata_stream_task *,track_type,int64_t,rational*)
bool set_material_name (const wchar_t *, size_t)
bool set_timecode (I_timecode_material *)
bool set_umid (const I_umid *)
track_list *source_tracks ()
const char *type () const

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

48

Member Functions Documentation

bool delete_metadata_track (I_track *)
Deletes a metadata track and all its associated metadata trees. Returns false if an error occurred.

bool free_tracks (track_list *)

Frees the list returned by metadata_tracks() or source_tracks(). Returns false if an error occurred.

const wchar_t *get_material_name (size_t &) const
Gets the Unicode UTF16 name of the current material. The size_t will contain the length of the returned wide string
(in bytes). Returned buffer must not de deleted. Please note that on the Linux platform, the size of a wchar_t is 4
bytes. Hence, only 2 bytes of the wchar_t are effectively used when reading UTF16 strings. Returns NULL if the
material is unnamed.

I_timecode_material *get_timecode () const
Retrieves an I_timecode_material interface defining the play out timecode of this material. Returned pointer must
not be deleted.

I_umid *get_umid () const
Returns the value of the Unique Material IDentifier uniquely identifying the current material. The purpose of this
UMID is explained in the I_umid class reference. Returned pointer must be deleted using the function
FreeUmidInterface().

track_list *metadata_tracks ()
Gets the list of descriptive metadata tracks from this material. Each track can be a timeline_metadata, an
event_metadata or a static_metadata track. Returned tracks can be edited but must not be destroyed. The list can be
freed at any time using free_tracks().

I_track *new_metadata_track (track_type, int64_t, rational *)
Creates a new metadata track to be filled with I_metadata_material. This track can be set to a timeline_metadata,
an event_metadata or a static_metadata track. Following parameters designate the origin of the track measured in
edit units as well as its edit rate (number of edit units in a second – the edit unit frequency). The rational value can
be destroyed right after calling this function.

I_track *new_stream_metadata_track (I_input_metadata_stream_task *,track_type,int64_t,rational*)
Creates a new metadata track to be filled with I_metadata_material. This function can be used when you need to
record metadata on-the-fly while creating an MXF file (the metadata you want to write is sent from a streaming
device). The I_input_metadata_stream_task is a class derived by MXFTk user to provide its own
implementation to feed MXFTk with metadata as it is received from the streaming device. The track_type can be
set to a timeline_metadata, an event_metadata or a static_metadata track. Following parameters designate the
origin of the track measured in edit units as well as its edit rate (number of edit units in a second – the edit unit
frequency). The rational value can be destroyed right after calling this function. Please refer to the “Streaming”
chapter for a complete overview of the streaming capabilities of MXFTk.

bool set_material_name (const wchar_t *, size_t)
Sets the name of this material. The first parameter contains the string in Unicode UTF16 and the second one the
string’s length in bytes. The wchar_t* pointer can be destroyed after calling this function.

bool set_timecode (I_timecode_material *)
Sets a new timecode material. The previous one (if any) will be automatically destroyed. Within an
I_generic_material, the timecode material must define a continuous timecode (in other words there should not be
several timecode redefinitions within the timecode material) as the output of an MXF file is meant to be linear.
Nonetheless, the timecode material of an I_concrete_material can be discontinuous. The new
I_timecode_material will be freed upon destruction of the current material.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

49

bool set_umid (const I_umid *)
Sets a new Unique Material IDentifier for the current material. Older one will be automatically destroyed. A copy
of the UMID is performed upon calling of this function so that the user remains responsible for the deletion of the
I_umid pointer.

track_list *source_tracks ()
Returns a list of tracks representing the audiovisual content. Within an I_generic_material these tracks define the
file play out. In an I_concrete_material, the I_track should be directly cast into I_concrete_track*. Hence, these
tracks will hold the embedded audiovisual binary data. Items of the list must not be destroyed. The list can be freed
at any time using free_tracks().

const char *type () const
Returns a string categorizing the current material (“Generic Material “, “Concrete Material “, “Metadata Material”
or “Timecode Material”). Returned pointer must not be destroyed.

4.2 I_track Class Reference

#include <I_track.hpp>

This class represents a generic material track. Each material is likely to contain several tracks. An I_track is used to
store metadata or editing information. I_concrete_track embed the audiovisual data while I_track reference
I_concrete_track to build up a complete editing.

Public Member Functions

bool add_metadata (I_metadata_material *, track_list *)
int64_t duration ()
rational *edit_rate ()
I_timecode *edit_unit_to_timecode (int64_t)
ordered_track_item_list *elements ()
bool free_elements (ordered_track_item_list *) const
I_timecode *get_end_timecode ()
I_timecode *get_start_timecode ()
uint32_t get_track_id () const
const wchar_t *get_track_name (size_t &) const
ordered_track_item_list *item_seek_eu (int64_t)
ordered_track_item_list *item_seek_timecode (const I_timecode *)
int64_t origin ()
bool remove_metadata (I_metadata_material *)
bool set_track_name (const wchar_t *, size_t)
int64_t timecode_to_edit_unit (const I_timecode *)
track_type type () const
const char *type_name () const

Member Functions Documentation

bool add_metadata (I_metadata_material *, track_list *)
This function will be operative only on a metadata track; no metadata material can be appended to picture, sound or

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

50

data tracks. The I_metadata_material will be added to the track according to the following rules:
 -timeline_metadata: metadata is appended right after the last metadata material already on the track. It is
added in a time-linear fashion: metadata materials are continuously appended one after the other. The duration
property of the metadata to be added is set in the I_metadata_material containing it. Therefore duration of the
track is the sum of the I_metadata_material’ duration.
 -event_metadata: metadata is added at a position set by the I_metadata_material containing it. This material
also defines the duration of this metadata
 -static_metadata: the I_metadata_material documents globally the I_generic_material containing this
metadata track. Therefore, it does not contain any time or duration references.
The second parameter specifies a list of tracks that this metadata annotates. Thus, the list must contain pointers on
I_track/I_concrete_track from the material containing this metadata track.
Adding metadata thanks to this function creates an I_dm_segment on the track. Return false if an error occurred.

int64_t duration ()
Returns the duration of the track measured in edit units. A negative value means that the duration is not known yet.

rational *edit_rate ()
Returns the edit rate of this track (number of edit units per second). Returned pointer should be destroyed using
FreeRationalInterface().

I_timecode *edit_unit_to_timecode (int64_t)
Converts the edit unit into a timecode value on this track. Returns NULL if the timecode value cannot be computed.
Returned timecode value should be freed using FreeTimecodeInterface().

ordered_track_item_list *elements ()
Returns a time-linearly ordered list of items from this track. Each I_track_item returned by this function can be
either cast into an I_source_clip, I_dm_source_clip or I_dm_segment (respectively thanks to
source_clip_cast(), dm_source_clip_cast() or dm_segment_cast()). Track items are the indivisible segments of
data embedded on a track: several track items butted to each other (or overlapping) materialize a track. The list can
be freed at any time using free_elements(). Each track item usually references a metadata tree or the content of an
audiovisual material. Combination of track items builds up a complete editing.

bool free_elements (ordered_track_item_list *) const
Frees the list returned by elements(). Returns false if an error occurred.

I_timecode *get_end_timecode ()
Returns the end timecode for this track. Returned pointer should be freed by the API user.

I_timecode *get_start_timecode ()
Returns the start timecode for this track. Returned pointer should be freed by the API user.

uint32_t get_track_id () const
Returns an integer uniquely identifying the current track within its material. However, two tracks originating from
a different material may have the same track_id() value.

const wchar_t *get_track_name (size_t &) const
Returns the name of the current track in a Unicode UTF16 string. After calling this function, the size_t parameter
will contain the length (in bytes) of the returned string. Returned pointer must not be deleted.

ordered_track_item_list *item_seek_eu (int64_t)
This function returns the list of I_track_item from this track located at the given edit unit. The list can be empty if
the edit unit is beyond track’s scope. On an event_metadata track the list may contain several track items; all other
tracks will contain at most one track item. Each track item provides methods to read its content. Hence when the
user wishes to read the data at a given edit unit, he must first seek to the desired location thanks to item_seek_eu()
or item_seek_timecode(). Then, the I_track_item just retrieved must be cast into I_source_clip, I_dm_segment
or I_dm_source_clip that will expose methods to read the metadata or audiovisual data.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

51

ordered_track_item_list *item_seek_timecode (const I_timecode *)

This function returns the list of I_track_item from this track located at the given timecode. Timecode information
can be retrieved from the function I_generic_material::get_timecode(). The list can be empty if the edit unit is
beyond track’s scope. On an event_metadata track the list may contain several track items; all other tracks will
contain at most one track item. Each track item provides methods to read its content. Hence when the user wishes to
read the data at a given edit unit, he must first seek to the desired location thanks to item_seek_eu() or
item_seek_timecode(). Then, the I_track_item just retrieved must be cast into I_source_clip, I_dm_segment or
I_dm_source_clip that will expose methods to read the metadata or audiovisual data. Furthermore, data from
different tracks read at the same timecode is synchronized and is meant to be played together.

int64_t origin ()
Returns the origin of this track measured in edit units. Future references to the track’s content will be performed
thanks to an offset relative to the origin.

bool remove_metadata (I_metadata_material *)
Removes the metadata material and its associated metadata tree if the current track is an event or static metadata
track. Returns false if an error occurred.

bool set_track_name (const wchar_t *, size_t)

Sets the name of this track. The first parameter contains the Unicode UTF16 string and the second one its length in
bytes. The wchar_t* pointer can be destroyed after calling this function.

int64_t timecode_to_edit_unit (const I_timecode *)
Converts the timecode value to an edit unit on this track. Returns -1 if the edit unit cannot be computed.

track_type type () const

Returns the type of this track (picture, sound, data, timeline_metadata, event_metadata or static_metadata).

const char *type_name () const
Returns the type of this track in a string. Returned pointer must not be deleted.

Related Documentation

enum track_type

picture
sound
data
timeline_metadata
event_metadata
static_metadata
track_type_error

This enumeration is used to define the variety of I_track :

• picture: video track. These tracks may only contain I_source_clip.

• sound: sound track. These tracks may only contain I_source_clip.

• data: auxiliary data track (subtitles, etc.). These tracks may only contain I_source_clip.

• timeline_metadata: descriptive metadata track where track items are butted to each other. This kind of
track may contain several I_dm_source_clip or I_dm_segment. Possibilities of track items
concatenations are limited by strong constraints: I_dm_source_clip and I_dm_segment must be
adjacent; one and only one must always be active at any instant on the track. These constraints are handled
internally by MXFTk so that the items only need to be appended one by one and they will be time-linearly
arranged automatically.

• event_metadata: descriptive metadata track where track items define events occurring at a given time and
for a given duration along this track. I_dm_source_clip and I_dm_segment can be positioned without

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

52

constraints on this kind of track (i.e. they can overlap or some parts of the track can remain empty).

• static_metadata: descriptive metadata track where track items do not carry time positioning information.
Metadata from this kind of track applies to the entirety of the material they reference. Only
I_dm_source_clip and I_dm_segment are allowed on this kind of track.

• track_type_error: invalid track type detected.

4.2.1 I_track_item Class Reference

#include <I_track_item.hpp>

According to the MXF terminology, a track can be defined as an ordered list of objects containing audiovisual data,
editing information or descriptive metadata. The indivisible segment of data from an I_track interface is an
I_track_item. This pure virtual class has three possible derivations, each of them specifying the properties of the track
at a given time. Depending on the track’s type, different constructions of I_track_item are allowed:

• On a timeline track (picture, sound, data), only editing information is allowed. Still, a difference remains if
the track is found in an I_generic_material or in an I_concrete_material. In a concrete material the binary
data stream is stored, while in a generic material the concrete materials’ tracks are referenced and assembled
all together to build an edition. Editions are represented by a combination of track items. As a result, a
timeline track shall only contain I_source_clip objects. They are adjacent to each other in order to build a
fully time-linear track representing a video, sound or data play out. I_source_clip may not overlap and for the
entire duration of the track, one and only one I_source_clip should be active at a given edit unit.

• On a metadata timeline track (timeline_metadata) only metadata or metadata editing are allowed.
Consequently, this kind of I_track shall only contain I_dm_source_clip or I_dm_segment. Once again, the
same positioning constraints remain: I_dm_source_clip or I_dm_segment may not overlap and for the entire
duration of the track, one and only one of them should be active at a given edit unit.

• On an event_metadata track, only metadata describing events occurring as the file is played is allowed.
Consequently, this kind of track shall only contain I_dm_segment. Furthermore, positioning constraints
disappear, these “segments” may overlap and “slices” of the track may remain empty.

• On a static_metadata track, only metadata applying to the entire duration of the linked essence tracks is
allowed. Consequently, this kind of track shall only contain I_dm_segment. Additionally, these “segments”
do not carry time constraints.

MXFTk user does not require a strong knowledge of these properties. The API ensures the consistency of each material
and track. However, the user is responsible for the choice of the appropriate track to be created when adding metadata.
Therefore, it is recommended to keep in mind the differences between timeline_metadata, event_metadata and
static_metadata tracks.

The I_track_item class and its three possible derivations are described hereafter. The type of an I_track_item

instance can be determined by performing a dynamic cast thanks to the following functions (for stability reasons, no
direct calls to dynamic_cast shall be performed on MXFTk interfaces). Failure to do so would systematically lead to
MXFTk’s data structures corruption.

I_source_clip *source_clip_cast (I_track_item *)
I_dm_source_clip *dm_source_clip_cast (I_track_item *)
I_dm_segment *dm_segment_cast (I_track_item *)

These functions will return NULL when trying to cast in the wrong type.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

53

4.2.2 I_source_clip Class Reference

#include <I_track_item.hpp>

This class holds editing information for audio, video or data tracks. No metadata can be found in an I_source_clip. The
play out of a track is described by a succession of I_source_clip. An I_source_clip references data contained in an
I_concrete_track.

Public Member Functions

uint64_t current_eu_size ()
int64_t get_current_eu ()
I_timecode *get_current_timecode ()
int64_t get_duration () const
int64_t get_end_position () const
I_timecode *get_end_timecode () const
size_t read_eu (uint8_t *, size_t)
I_generic_material *get_referenced_material () const
const I_umid *get_referenced_material_umid () const
I_track *get_referenced_track () const
int64_t get_start_position () const
I_timecode *get_start_timecode () const
bool seek_eu (int64_t)
bool seek_next_eu ()
bool seek_previous_eu ()

Member Functions Documentation

uint64_t current_eu_size ()
Returns the size of the current edit unit from the referenced track. This function can be called to set the size of the
buffer used when calling read_eu(). Return UINT64_ERROR if the size is unknown (usually when the current edit
unit is not valid).

int64_t get_current_eu ()
Returns the current edit unit offset relative to the origin of the referenced track (not relative to the origin of the track
containing this source clip). Return INT64_ERROR if the current edit unit is invalid. Returned value is comprised
between get_start_position() and get_end_position().

I_timecode *get_current_timecode ()
Returns the timecode corresponding to the current edit unit. This is a timecode relative to the track containing this
source clip (not relative to the referenced track). Returned timecode is always comprised between
get_start_timecode() and get_end_timecode(). Returned pointer must be deleted by MXFTk user. Return NULL
if the current timecode could not be retrieved.

int64_t get_duration () const

Retrieves the duration of this I_source_clip (measured in edit units of the track containing this source clip). The
sum of the duration of each source clip defines the total duration of the track. An edit unit is the time unit for the
current track (usually a frame or a field for a video track). Please refer to [377M] for further information. The edit
rate is the number of edit units per second. Note that the track containing the source clip may have an edit rate

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

54

different from the referenced track. Returns -1 if the duration if unknown.

int64_t get_end_position () const
Returns the offset of the last edit unit to be read on the referenced track. The offset is relative to the origin of the
referenced track. Return INT64_ERROR if this information could not be retrieved (notably if the duration of the
source clip is unknown).

I_timecode *get_end_timecode () const
Returns the timecode corresponding to the last edit unit of this source clip. This is a timecode relative to the track
containing this source clip (not relative to the referenced track). Return NULL if this timecode could not be
retrieved.

size_t read_eu (uint8_t *, size_t)
Reads the data from the current edit unit and stores it in the uint8_t* buffer. The size_t parameter specifies the size
of the buffer. Usually, it is set to the size returned by current_eu_size(). However, the reading of an edit unit can be
split in several calls to read_eu() with smaller buffer sizes if required. For instance if current_eu_size() returns a
size of 200000 bytes. Calling read_eu(buffer, 200000) or calling twice read_eu(buffer, 100000) will retrieve all the
data from the current edit unit.

I_generic_material *get_referenced_material () const
Returns a pointer (reference) to the material containing the I_track referenced by get_referenced_track(). Return
NULL if no material is being referenced or if the material is not in the file. Returned material can be cast into an
I_concrete_material if this source clip is in an I_generic_material.

const I_umid *get_referenced_material_umid () const
Returns the Unique Material Identifier of the referenced material. This function is particularly useful when
get_referenced_track() returns NULL. If the UMID is not nil, it generally means that the referenced material is
stored in another MXF file (this can notably be the case when reading OpAtom files). Retrieving the UMID of the
missing material may help to locate it in a database environment.

I_track *get_referenced_track () const
Returns a pointer (reference) to the track containing the audiovisual source to be edited on the current track. Return
NULL if no track is being referenced or if the referenced material is not in the file. Returned track can be cast into
an I_concrete_track if this source clip is in an I_generic_material.

int64_t get_start_position () const
Returns the offset of the first edit unit to be read on the referenced track. The offset is relative to the origin of the
referenced track. Returns INT64_ERROR if this information could not be retrieved.

I_timecode *get_start_timecode () const
Returns the timecode corresponding to the first edit unit of this source clip. This is a timecode relative to the track
containing this source clip (not relative to the referenced track). Returns NULL if this timecode could not be
retrieved.

bool seek_eu (int64_t)
Seeks a given edit unit to be read on the referenced track. The edit unit must be comprised between
get_start_position() and get_end_position(). Returns false if the edit unit can not be reached.

bool seek_next_eu ()
Jumps to the next edit unit to be read on the referenced track. Returns false if the edit unit can not be reached.

bool seek_previous_eu ()
Jumps to the previous edit unit to be read on the referenced track. Returns false if the edit unit can not be reached.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

55

I_source_clip data access

The following figure illustrates data access from the source clip.

The data carried by an I_source_clip is the content of the source data track returned by get_referenced_track(),
starting from the offset returned by get_start_position() and ending at the offset returned by get_end_position().

4.2.3 I_dm_source_clip Class Reference

#include <I_track_item.hpp>

This class holds editing information for descriptive metadata to be found on timeline_metadata tracks. It references
metadata contained in other materials. Within an MXF file, metadata tracks from an I_generic_material (MXF
terminology: material package) can reference tracks from an I_concrete_material (MXF terminology: top-level
source package) or even from a low-level source package. The current version of MXFTk does not allow addition of
I_dm_source_clip to a metadata track. However, they will be recognized if found while decoding a file.

I_generic_material

source_tracks()

I_track

I_track

elements()

elements()
I_source_clip

I_concrete_material

I_concrete_track

I_concrete_track

source_tracks()

elements()

elements()

dv video

bwf audio

origin()

get_referenced_material() get_referenced_track()

get_start_position()

get_end_position()

get_current_eu()

get_current_timecode()

I_source_clip I_source_clip I_source_clip

I_mxf_file

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

56

Public Member Functions

track_list *get_documented_tracks () const
int64_t get_duration () const
int64_t get_end_position () const
I_timecode* get_end_timecode () const
int64_t get_start_position () const
I_timecode* get_start_timecode () const
I_generic_material *get_referenced_material () const
const I_umid *get_referenced_material_umid () const
I_track *get_referenced_track () const

Member Functions Documentation

track_list *get_documented_tracks () const
Returns a list of picture, sound or data tracks from the material containing the current metadata track. Metadata
from this I_dm_source_clip documents the tracks from this list.

int64_t get_duration () const
Retrieves the duration of this I_dm_source_clip (measured in edit units of the track containing this dm source
clip). The sum of the duration of each metadata source clip and metadata segment defines the total duration of the
track. An edit unit is the time unit for the current track. Please refer to [377M] for further information. The edit rate
is the number of edit units per second. Note that the track containing this metadata source clip may have an edit rate
different from the referenced track. Returns -1 if the duration if unknown.

int64_t get_end_position () const
Returns the offset of the last edit unit to be read on the referenced track. The offset is relative to the origin of the
referenced track. Returns INT64_ERROR if this information could not be retrieved.

I_timecode* get_end_timecode () const
Returns the timecode corresponding to the last edit unit of this metadata source clip. This is a timecode relative to
the track containing this metadata source clip (not relative to the referenced track). Returns NULL if this timecode
could not be retrieved.

I_generic_material *get_referenced_material () const
Returns a pointer (reference) to the material containing the I_track referenced by get_referenced_track(). Return
NULL if no material is being referenced or if the material is not in the file. Returned material can be cast into an
I_generic_material if this source clip is in an I_generic_material.

const I_umid *get_referenced_material_umid () const
Returns the Unique Material Identifier of the referenced material. This function is particularly useful when
get_referenced_track() returns NULL. If the UMID is not nil, it generally means that the referenced material is
stored in another MXF file (this can notably be the case when reading OpAtom files). Retrieving the UMID of the
missing material may help to locate it a database environment.

I_track *get_referenced_track () const

Returns a pointer (reference) to the track containing the audiovisual source to be edited on the current track.
Returns NULL if no track is being referenced or if the referenced material is not in the file. Returned track can be
cast into an I_concrete_track if this source clip is in an I_generic_material.

int64_t get_start_position () const

Returns the offset of the first edit unit to be read on the referenced track. The offset is relative to the origin of the
referenced track. Returns INT64_ERROR if this information could not be retrieved.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

57

I_timecode *get_start_timecode () const
Returns the timecode corresponding to the first edit unit of this metadata source clip. This is a timecode relative to
the track containing this metadata source clip (not relative to the referenced track). Returns NULL if this timecode
could not be retrieved.

The metadata carried by an I_dm_source_clip is the content of the metadata track returned by
get_referenced_track(), starting from the offset returned by get_start_position() and ending at the offset returned by
get_end_position(). The metadata from this I_dm_source_clip documents the tracks returned by
get_documented_tracks().

4.2.4 I_dm_segment Class Reference

#include <I_track_item.hpp>

This class holds descriptive metadata. Each I_dm_segment references an I_metadata_material as well as a list of
tracks documented by this material. Please, refer to the I_metadata_material class reference for further information
on how to create and extract metadata.

Public Member Functions

track_list *get_documented_tracks () const
int64_t get_duration () const
I_timecode* get_end_timecode () const
I_metadata_material *get_metadata_material () const
I_timecode* get_start_timecode () const

Member Functions Documentation

track_list *get_documented_tracks () const
Returns a list of picture, sound or data tracks from the material containing the current metadata track. Metadata
from this I_dm_source_clip documents the tracks from this list.

int64_t get_duration () const
Retrieves the duration of this I_dm_segment (measured in edit units of the track containing this metadata
segment). The sum of the duration of each metadata source clip and metadata segment defines the total duration of
the track. An edit unit is the time unit for the current track. Please refer to [377M] for further information. The edit
rate is the number of edit units per second. Note that the track containing this metadata source clip may have an edit
rate different from the referenced track. Returns -1 if the duration if unknown.

I_timecode* get_end_timecode () const
Returns the timecode corresponding to the last edit unit of this metadata segment. This is a timecode relative to the
track containing this metadata segment. Returns NULL if this timecode could not be retrieved.

I_metadata_material *get_metadata_material () const

Returns the I_metadata_material containing the descriptive metadata tree and the time positioning information
for this I_dm_segment.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

58

I_timecode *get_start_timecode () const
Returns the timecode corresponding to the first edit unit of this metadata segment. This is a timecode relative to the
track containing this metadata segment. Returns NULL if this timecode could not be retrieved.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

59

5. Concrete Material
Concrete material and tracks enable the manipulation of audiovisual data. They grant access to the “binary” video or
audio streams of each track thanks to read functions. Concrete materials have a UMID (SMPTE Unique Material
Identifier, see [330M]). MXFTk user can set its value after creating the material or leave the default one automatically
set by the API.

5.1 I_concrete_material Class Reference

#include <I_concrete_material.hpp>

This class contains the audiovisual data embedded in an MXF file. I_generic_material’s tracks describe an editing of
one or several I_concrete_material’s tracks in order to build the file play out.

Public Member Functions

void compute_duration ()
bool end_of_stream (unsigned int)
wrapping get_wrapping () const
size_t write (unsigned int, const uint8_t *, size_t)

Constructor and Destructor Documentation

bool NewConcreteMaterialInterface (I_concrete_material **, locators *, wrapping, rational*, bool)
Retrieves a pointer on an I_concrete_material interface. The second parameter is a list of complete paths to the
audio or video source files to be embedded in this concrete material. This can be the path to a dv, mpg, wav, etc. file
or to a series of still images (j2k, bmp, tif) to be wrapped as a single track. In that case the syntax to define the series
is the following one: in order to designate a series of images the following syntax should be inserted in the path of
the locator #[d, f, l, s] where:

• d should be a number designating the number of digits

• f should be the first number of the file to be wrapped

• l should be the last number of the file to be wrapped

• s should be the step between two successive files to be wrapped
Note that it is perfectly valid to set a negative step. For instance
"C:\\images\\myfile#[4, 10, 500, 2].jp2", "C:\\sound\\sound.wav" will perform the wrapping of the following series
of files:
 C:\\images\\myfile0010.jp2

C:\\images\\myfile0012.jp2
 C:\\images\\myfile0014.jp2
 ...
 C:\\images\\myfile0498.jp2
 C:\\images\\myfile0500.jp2
 with the audio wave file "sound.wav"
The third parameter specifies the wrapping of this material. The fourth parameter can be used to set the default edit
rate (the edit rate that will be used when its value cannot be computed from the essence – typically when wrapping
audio). Finally the fifth parameter can be set to true to force MXFTk to ignore the audio from the DV files that will
be wrapped. In that case, no audio track will be created for the DV streams. Returns false if the allocation failed.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

60

bool NewExtConcreteMaterialInterface (I_concrete_material **, const char *, rational*, bool)

Retrieves a pointer on an I_concrete_material interface that will contain an external reference to a raw media file.
The second parameter is the path to the audio or video source file to be referenced by the material. The third
parameter can be used to set the default edit rate (the edit rate that will be used when its value cannot be computed
from the essence – typically when wrapping audio). Finally the fourth parameter can be set to true to force MXFTk
to ignore the audio from the DV streams that will be wrapped. In that case, no audio track will be created for the DV
streams. Returns false if the allocation failed.

bool NewCryptedMaterialInterface (I_concrete_material **, crypted_locators *, rational *, bool)
Retrieves a pointer on an I_concrete_material interface. The second parameter is a list of complete paths (and
crypt keys) to the audio or video source files to be embedded and crypted in this concrete material. The third
parameter can be used to set the default edit rate (the edit rate that will be used when its value cannot be computed
from the essence – typically when wrapping audio). Finally the fourth parameter can be set to true to force MXFTk
to ignore the audio from the DV streams that will be wrapped. In that case, no audio track will be created for the DV
streams. Crypted content is always frame wrapped. Returns false if the allocation failed.

bool NewStreamMaterialInterface (I_concrete_material **, I_essence_stream_task *, wrapping, bool)
Retrieves a pointer on an I_concrete_material interface initialized with audio or video streams. This function
should be used when wrapping an MXF file on the fly as the audiovisual material is received from a streaming
media. The I_essence_stream_task (or I_crypted_essence_stream_task) provides control over the audiovisual
stream. User should refer to the “Streaming” chapter for a complete overview of MXFTk’s streaming capabilities.
The third parameter specifies the wrapping of this material. Finally the fourth parameter can be set to true to force
MXFTk to ignore the audio from the DV streams that will be wrapped. In that case, no audio track will be created
for the DV streams. Returns false if the allocation failed.

bool FreeConcreteMaterialInterface (I_concrete_material **)

Frees an I_concrete_material interface. Returns false if the deallocation failed.

Member Functions Documentation

void compute_duration ()
Use this function if you need to know the duration of your material before attaching it to an MXF file. It will force
the computation of the duration of the tracks from this material. However, be aware that this task may be
time-consuming.

bool end_of_stream (unsigned int)
States that an audiovisual data stream is now closed. This function will be operative only if this material was
created using NewStreamMaterialInterface(). After end_of_stream(), future calls to the write() function on this
stream will not operate. Calls to this function should be performed only within the function
I_essence_stream_task::data_request to notify to MXFTk that no more data is to be received from the stream.
The integer parameter is a unique identifier of the current stream, also parameter of the function
I_essence_stream_task::data_request.

wrapping get_wrapping () const
Gets the wrapping of the current material.

void write (unsigned int, const uint8_t *, size_t)
Supplies the current material with a buffer originating from an audiovisual data stream. This function will be
operative only if this material was created using NewStreamMaterialInterface(). Calls to this function should be
performed only within the function I_essence_stream_task::data_request. The integer parameter is a unique
identifier of the current stream, also parameter of the function I_essence_stream_task::data_request. The second
is the buffer of data and the third one the size in bytes of this buffer.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

61

Related Documentation

enum wrapping

std_wrapping
clip_wrapping
frame_wrapping
line_wrapping
custom_wrapping
evtr_wrapping
xdcam_wrapping
p2_wrapping
k2_wrapping
opzero_wrapping
dcp_wrapping
wrapping_error

This enumeration defines the wrapping of an essence embedded in an MXF file (std_wrapping defines the default
wrapping for this essence type). Some wrappings are not allowed in particular cases. MXFTk currently does not
support line_wrapping. You must create your materials in xdcam_wrapping in order to attach them to an
I_xdcam_dv_file, I_xdcam_imx_file or I_xdcam_proxy_file; evtr_wrapping in order to attach them to an
I_evtr_file file; p2_wrapping in order to attach them to a P2 file; k2_wrapping in order to build files similar to the
ones produced by a Thomson Grass Valley K2 server; opzero_wrapping in order to attach them to an I_op1a_file built
with the OpZero constructor; dcp_wrapping in order to attach them to an I_dcp1_file.

5.2 I_concrete_track Class Reference

#include <I_concrete_track.hpp>

This class represents the track of an I_concrete_material. It contains the “physical” audiovisual data and supplies
methods to access its content. This class directly accesses the audiovisual data of the file. When reading the output of
an MXF file, this class should not be used; instead prefer the classes I_source_clip of the tracks from the generic
material which holds all the editing information
Concrete tracks can be retrieved thanks to a call to source_tracks() from the inherited class I_generic_material. Items
from the returned list can be directly cast into I_concrete_track (do not use dynamic_cast, this would cause crashes).

Public Member Functions

uint64_t current_eu_size ()
bool free_descriptors (metadata_list *)
const uint8_t *get_cryptographic_key_id ()
int64_t get_current_eu ()
uin64_t get_current_offset()
metadata_list *get_descriptors () const
I_essence_type *get_essence_type ()
const char *get_locator () const
size_t read_eu (uint8_t *, size_t s)
bool seek_eu (int64_t)
bool seek_next_eu ()

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

62

bool seek_previous_eu ()
bool seek_timecode (const I_timecode *)
void set_cipher_key (const uint8_t *)
void set_external_ref_file (const char *)

Member Functions Documentation

uint64_t current_eu_size ()
Returns the size in bytes of the current edit unit. This function can be used to set the size of the buffer passed to the
function read_eu(). Returns 0 if all the data for this edit unit has been read or if an error occurred.

bool free_descriptors (metadata_list *)
Frees the list returned by get_descriptors().

const uint8_t *get_cryptographic_key_id ()
Call this function to know if the concrete track is protected by an key. This will notably be the case when
manipulating files following the standard of the Digital Cinema Initiative. The function returns the 16-byte long
public key protecting the track, otherwise it will return NULL if the track’s content is not encrypted. You need to
provide the corresponding cipher key in order to be able to read the content of this track.

int64_t get_current_eu ()
Returns the current edit unit relative to the origin of the track. The real position within the embedded audiovisual
data is actually the sum of the track’s origin with this edit unit. For instance on a video track, if the origin is 5 and
the current edit unit 10, when calling read_eu(), the 15th frame will be read. The legal edit units range is
[-track_origin, –track_origin+track_duration-1]. Returns INT64_ERROR if an error occurred.

uin64_t get_current_offset()
Returns the current offset in bytes from the beginning of the file. Returns UINT64_ERROR if an error occurred.

metadata_list *get_descriptors () const
Retrieves a list of I_metadata describing the nature and the properties of the track’s content. Usually the list will
contain a single item. These properties are specific to each essence type and can be checked with the MXF File
Format glossary [377M]. The descriptors grant access to properties such as the size or the aspect ratio of images
from a video track. Some of the information found in the descriptors will be redundant with the one provided by
get_essence_type().

I_essence_type *get_essence_type ()
Retrieves an I_essence_type interface describing the type of essence embedded in this concrete track. MXFTk user
can use this function to figure out if the track contains DV, MPEG, D10, etc. data. When possible it also states if it
is a NTSC or PAL source.

const char *get_locator () const
Returns a string identifying the original source (the path to the file used to build this track) of the track’s content.
This function is only useful when building concrete material from several source files. The call to this function lets
you know which of these files the current track embeds. Returned pointer must not be deleted.

size_t read_eu (uint8_t *, size_t s)
Fills a buffer with the binary audiovisual data contained in this track at the current edit unit. This function will fill
the buffer only when reading an MXF file (not while creating one)! The second parameter states the size of the
buffer provided and the returned value indicates the number of bytes that were effectively read from the track. The
current edit unit can be entirely read through successive calls to this function until it returns a nil value.

bool seek_eu (int64_t)
Puts the reading pointer of the track on the given edit unit. Returns false if this task could not be performed.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

63

bool seek_next_eu ()
Puts the reading pointer of the track on the next edit unit. Returns false if this task could not be performed.

bool seek_previous_eu ()
Puts the reading pointer of the track on the previous edit unit. Returns false if this task could not be performed.

bool seek_timecode (const I_timecode *)

Puts the reading pointer of the track on the timecode value specified. Timecode information can be retrieved from
the I_timecode_material of the I_concrete_material containing this I_concrete_track. Returns false if this task
could not be performed.

void set_cipher_key (const uint8_t *)
Call this function to set the private 16-byte long cipher key corresponding to the public cryptographic key
protecting this track. If the key is correct, you will now be able to read the content of this track.

void set_external_ref_file (const char *)
Sets the path to the external reference for this concrete track. Call this function to load the referenced file when
reading an MXF file with external references.

5.3 I_essence_type Class Reference

#include <I_essence_type.hpp>

This class provides information on the content of a concrete track such as the video or sound format. It should be used
to find out which decoder is required for playing the audiovisual data (essence) embedded on a track. Please refer to
SMPTE 377M for further information on the values returned by this class.

Public Member Functions

rational *aspect_ratio () const
uint32_t bit_rate () const
uint32_t component_depth () const
uint32_t display_height () const
uint32_t display_width () const
electro_spatial_form *electro_spatial_formulation () const
locators *external_references (bool&) const
layout frame_layout() const
essence_format get_format () const
essence_source get_type () const
uint32_t nb_channels () const
uint32_t quantization () const
sample_structure sampling () const
rational *sampling_rate () const
uint32_t stored_height () const
uint32_t stored_width () const
bool update_external_references (locators *, bool)

Member Functions Documentation

rational *aspect_ratio () const
Returns the aspect ratio of this essence if this information can be retrieved (e.g. 16/9 or 4/3). Return NULL if the
aspect ratio is not defined for this kind of essence or if this information could not be retrieved. Returned pointer
should not be deleted.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

64

uint32_t bit_rate () const
Returns the bit rate per second in Mbps. Returns 0 if the bit rate is not defined for this kind of essence or if this
information could not be retrieved.

uint32_t component_depth () const

Returns the component depth (e.g. 8, 10 or 16) if applicable (video track).

uint32_t display_height () const

Returns the display height in pixels (video track). Returns 0 if the height is not defined for this kind of essence or if
this information could not be retrieved.

uint32_t display_width () const
Returns the display width in pixels (video track). Returns 0 if the width is not defined for this kind of essence or if
this information could not be retrieved.

electro_spatial_form *electro_spatial_formulation () const

Returns the electro spatial formulation if applicable (audio track). Please refer to SMPTE 377M for further
information.

locators *external_references (bool&) const

Returns the list of external references for the concrete track referenced by this essence type object. The boolean
value is set to true if the returned locators are URLs. If set to false the returned locators are just textual information.

layout frame_layout() const

Returns the frame layout (interlaced, progressive, etc.) if applicable (video track). Please refer to SMPTE 377M for
further information.

essence_format get_format () const

Returns the essence format when this data can be retrieved. PAL, NTSC, interlaced, etc.

essence_source get_type () const

Returns the essence type. MPEG, DV, AES, BWF, etc.

uint32_t nb_channels () const
Returns the number of channels (audio track).

uint32_t quantization () const
Returns the quantization in bits per sample (audio track).

sample_structure sampling () const
Returns the sample rate for this essence (if applicable).

rational *sampling_rate () const
Returns the sampling rate of this essence if this information can be retrieved (audio track). Return NULL if the
aspect ratio is not defined for this kind of essence or if this information could not be retrieved. Returned pointer
should not be deleted.

uint32_t stored_height () const

Returns the stored height in pixels (video track). Returns 0 if the height is not defined for this kind of essence or if
this information could not be retrieved.

uint32_t stored_width () const
Returns the stored width in pixels (video track). Returns 0 if the width is not defined for this kind of essence or if
this information could not be retrieved.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

65

bool update_external_references (locators *, bool)
Sets the new location of the externally referenced files. The boolean value should be set to true is the locators are
URLs or false if they are just textual information. This function is particularly useful for updating a file when doing
a partial restore of an MXF file with external references or when updating an MXF file with external references that
moved. Returns false if an error occurred.

Related Documentation

enum essence_source

ess_unknown // unrecognized essence
ess_d10 // D10
ess_d11 // D11
ess_dv_unknown // DV other than IEC or SMPTE
ess_dv_iec // DV IEC
ess_dv_cam_iec // DV IEC from dvcam-1
ess_dv_smpte // DV SMPTE
ess_mpeg_es // MPEG Elementary Stream
ess_mpeg_pes // MPEG Packetized Elementary Stream
ess_mpeg_ps // MPEG Program Stream
ess_mpeg_ts // MPEG Transport Stream
ess_mpeg4 // MPEG4 Stream
ess_uncompressed_unknown // Uncompressed other than sd or hd
ess_uncompressed_sd // Uncompressed SD
ess_uncompressed_hd1080 // Uncompressed HD 1080 lines
ess_uncompressed_hd720 // Uncompressed HD 720 lines
ess_jpeg2k // JPEG 2000
ess_bwf // Audio Broadcast Wave
ess_aes3 // Audio AES3
ess_a_law // Audio A-law
ess_aiff // Audio AIFF
ess_vc3 // VC3 Video

enum essence_format

for_unknown // unrecognized format
for_525_5994p // NTSC 59.94Hz progressive
for_525_5994i // NTSC 59.94Hz interlaced
for_525_60i // NTSC 60Hz interlaced
for_625_50i // PAL 50Hz interlaced
for_625_50p // PAL 50Hz progressive
for_720_2398p // HD 720 lines 23.98Hz progressive
for_720_24p // HD 720 lines 24Hz progressive
for_720_25p // HD 720 lines 25Hz progressive
for_720_2997p // HD 720 lines 29.97Hz progressive
for_720_30p // HD 720 lines 30Hz progressive
for_720_50p // HD 720 lines 50Hz progressive
for_720_5994p // HD 720 lines 59.94Hz progressive
for_720_60p // HD 720 lines 60Hz progressive
for_1080_2398p // HD 1080 lines 23.98Hz progressive
for_1080_2398sf // HD 1080 lines 23.98Hz segmented frame
for_1080_24p // HD 1080 lines 24Hz progressive
for_1080_24sf // HD 1080 lines 24Hz segmented frame
for_1080_25p // HD 1080 lines 25Hz progressive
for_1080_25sf // HD 1080 lines 25Hz segmented frame
for_1080_2997p // HD 1080 lines 29.97Hz progressive

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

66

for_1080_2997sf // HD 1080 lines 29.97Hz segmented frame
for_1080_30p // HD 1080 lines 30Hz progressive
for_1080_30sf // HD 1080 lines 30Hz segmented frame
for_1080_50i // HD 1080 lines 50Hz interlaced
for_1080_50p // HD 1080 lines 50Hz progressive
for_1080_5994p // HD 1080 lines 59.94Hz progressive
for_1080_5994i // HD 1080 lines 59.94Hz interlaced
for_1080_60i // HD 1080 lines 60Hz interlaced
for_1080_60p // HD 1080 lines 60Hz progressive

enum sample_structure

samp_unknown
samp_4_1_1
samp_4_2_0
samp_4_2_2
samp_4_4_4_4

enum layout

layout_full_frame
layout_separate_fields
layout_single_field
layout_mixed_fields
layout_segmented_frame
layout_unknown

enum electro_spatial_form

formulation_two_channel_default
formulation_two_channel
formulation_single_channel
formulation_primary_secondary
formulation_stereophonic
formulation_single_channel_double_frequency
formulation_stereo_left_channel_double_frequency
formulation_stereo_right_channel_double_frequency
formulation_multi_channel_default
formulation_unknown

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

67

6. Metadata Material
Metadata material enables the manipulation of descriptive metadata either built by MXFTk user or read from an MXF
file. In some cases, this structure is also used to read specific structural metadata (such as descriptors from a concrete
material or identification sets). Metadata (I_metadata) carries a set of properties. A property I_property is defined by
a label_c, normalized and validated thanks to a dictionary, and a value I_value. A label is a char* string and a value is
a memory pointer of a given type that can contain metadata (when the pointer is referencing an I_metadata interface).
Using this mechanism of metadata objects referencing other metadata objects a tree structure can be easily built. Only
MXFTk Advanced version will let you attach descriptive metadata to your MXF files.

6.1 I_metadata_material Class Reference

#include <I_metadata_material.hpp>

This class embeds a metadata tree and time positioning information. In order to tie an I_metadata_material to a
metadata track, it is compulsory to use the function add_metadata() from the interface I_track.

Public Member Functions

wchar_t * get_comment (size_t &) const
int64_t get_duration () const
I_metadata *get_metadata () const
metadata_type get_metadata_type () const
int64_t get_start_position () const
bool replace_metadata (I_metadata *)

Constructor and Destructor Documentation

bool NewMetadataMaterialInterface (I_metadata_material **, metadata_type, I_metadata *, int64_t,
int64_t, const wchar_t *, size_t)

Retrieves a pointer on an I_metadata_material interface. The second parameter sets the type of this metadata
(m_timeline, m_event or m_static). The third parameter is an interface pointing to the metadata tree to be
embedded. The fourth and fifth parameters respectively set the offset and the duration (measured in edit units of the
targeted metadata track – leave to -1 to have MXFTk compute it automatically when possible) of this material in the
metadata track. Finally the last two parameters respectively points to a Unicode UTF16 string and specifies its size
in bytes. This string is meant to comment this new metadata material. It can be NULL and can be deleted after
calling this function. Returns false if the allocation failed.
Depending on the metadata type, the offset and duration data will be ignored:

• m_timeline: offset into the targeted track (fourth parameter) will be ignored.

• m_event: both will be used.

• m_static: both the offset and the duration into the targeted track (fourth and fifth parameters) will be
ignored.

bool FreeMetadataMaterialInterface (I_metadata_material **)
Frees an I_metadata_material interface. Returns false if the deallocation failed.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

68

Member Functions Documentation

wchar_t * get_comment (size_t &) const
Retrieves a Unicode UTF16 string commenting the current metadata material. It also sets its length in the size_t
parameter. This string must not be deleted or edited.

int64_t get_duration () const
Gets the duration of this material in edit units. A negative value means that the duration is unknown or not
applicable (in an m_static metadata material).

I_metadata *get_metadata () const
Retrieves a reference to the metadata tree embedded in this material. Returned pointer must not be deleted but can
be edited.

metadata_type get_metadata_type () const
Returns the type of this metadata material (m_timeline, m_event or m_static).

int64_t get_start_position () const
Gets the offset relative to the origin of the metadata track that contains (or will contain) this metadata material. A
negative value means that this offset is unknown or not applicable (in an m_static metadata material).

bool replace_metadata (I_metadata*)
Replaces the current descriptive metadata tree with a new one. The previous one will be automatically destroyed.
Returns false if an error occurred.

Related Documentation

enum metadata_type

m_timeline
m_event
m_static

This enumeration defines the three possible types of metadata:
m_timeline: metadata to be written in or read from a timeline_ metadata track. In this kind of track, metadata
materials are added sequentially, one after the other. Metadata materials are adjacent, can not overlap and one and
only one metadata material must be active at any time on the track.
m_event: metadata to be written in or read from an event_metadata track. In this kind of track, metadata materials
are positioned at a given offset for a given duration. There are no constraints: metadata materials may overlap, have
nil duration and some parts of the track may remain empty.
m_static: metadata to be written in or read from a static_metadata track. In this kind of track, no position or
duration references are allowed. This metadata material applies to the entirety of the track.

6.2 I_metadata Class Reference

#include <I_metadata.hpp>

This class handles descriptive metadata. A metadata framework to be embedded in a metadata material is structured as
a tree. An I_metadata contains a set of properties. Each property links a value of a given type to a label_c (a string
normalized according to a dictionary). The value of a property can be an I_metadata as well. This gives the
opportunity to build a tree of I_metadata interfaces: a root I_metadata interface may contain among its properties
other instances of I_metadata and so on. This kind of construction is often required in the usual metadata schemes
such as the DMS1. DMS1 let’s you set for instance the location of the clip, the actors appearing in the scene, etc…
MXFTk’s metadata scheme manages all the DMS1 metadata. Metadata that does not belong to this particular scheme
is not handled with the default dictionary. In order to address other metadata schemes it is required to update the

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

69

dictionary thanks to the function SetDictionary(). The default dictionary is located in the directory dic of your
installation. You will find there a folder named DMS1 containing the XML files drawing an exhaustive list of
descriptive metadata. Although the dictionary is used to validate the exactness of the metadata trees, it is recommended
to have an elementary knowledge of the schemes addressed in [EG42] [380M] in order to build your own trees.

typedef const char* label_c

String defining a metadata by its name.

Public Member Functions

bool add (const I_property *)
bool free_properties (properties_list *) const
properties_list * get_dic_properties () const
label_c get_label () const
properties_list * get_properties () const
bool output_xml (const char *)
bool remove (const I_property *)

Constructors and Destructor Documentation

bool NewMetadataInterfaceByLabel (I_metadata **, label_c)
Retrieves a pointer on an I_metadata interface. The second parameter specifies a label identifying the metadata.
This label must strictly follow the dictionary naming convention (domain:property_name) such as
“DMS1:SceneFramework” or even “file_format:Preface” when dealing with structural metadata. The label_c

object can be destroyed after calling this function. Returns false if the allocation failed.

bool NewMetadataInterfaceByXML (I_metadata **, const char *)
Retrieves a pointer on an I_metadata interface. The second parameter specifies the complete path to an XML file
describing a metadata tree. Returns false if the allocation failed.
Warning: the XML scheme must effectively match an arborescence structure: no more than one metadata can be a
root. Failure to do so will invalidate the loading of the tree or lead to hectic behaviour.

bool FreeMetadataInterface (I_metadata **)

Frees an I_metadata interface. Returns false if the deallocation failed.

Member Functions Documentation

bool add (const I_property *)
Adds a property to the current metadata. The content of the property will be copied; therefore the I_property

pointer can be freed after calling this function. Returns false if an error occurred.
Warning: if the current metadata already contains a property with the same label_c it will be destroyed and
replaced by the new one. However, in the case of a property which type is MXF_ARRAY_STRONG_REF or
MXF_ARRAY_WEAK_REF, the I_metadata interfaces of the property will be added to those already stored in
the current metadata. This mechanism helps building a tree step-by-step without destroying previously created
sub-trees.

bool free_properties (properties_list *) const
Frees the properties list returned by get_properties() or get_dic_properties(). Returns false if an error occurred.

properties_list * get_dic_properties () const

Returns a list referencing all the properties that can be added to the current metadata according to the dictionary.
This function can be used to rapidly retrieve all the possible properties for the current node of the tree. Returned list
must be freed using the function free_properties().

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

70

label_c get_label () const

Gets a label identifying the current metadata.

properties_list * get_properties () const
Returns a list referencing all the properties from the current metadata. This is a read-only structure, meaning that
modifying the list or its content will not modify the properties stored within the current metadata. Returned list
must be deleted using free_properties().

bool output_xml (const char *)
Dumps an XML representation of the current metadata tree. The XML file will be written at the location specified
by the string. Returns false if an error occurred.

bool remove (const I_property *)
Destroys a property stored in the current metadata object. Return false if an error occurred.
Warning: The label_c of the property is compared to the label_c of the properties stored within the current
metadata. If a label_c is matching then the internal property will be entirely destroyed. However if the property’s
type is MXF_ARRAY_STRONG_REF or MXF_ARRAY_WEAK_REF then only referenced I_metadata
interfaces will be deleted. This mechanism helps destroying only some branches of the metadata tree.
Warning: The parameter (I_property) is not destroyed; it must be freed by MXFTk user.

6.3 I_property Class Reference

#include <I_property.hpp>

An I_metadata interface contains several I_property. A property is a label associated to a value of a given type.

Public Member Functions

label_c get_label () const
metadata_list *get_dic_metadata_sets () const
const I_value *get_value () const
bool free_metadata_sets (metadata_list *) const

Constructor and Destructor Documentation

bool NewPropertyInterface (I_property **, label_c, const I_value *)
Retrieves a pointer on an I_property interface. The second parameter is a label identifying the metadata according
to the naming convention of the dictionary (DMS1:ClipFramework for instance). The third parameter is a reference
to the property’s value. This one should not be destroyed as long as the new property has not been deleted.

bool FreePropertyInterface (I_property **)
Frees an I_property interface. The I_value interface that was used to create this property (I_value parameter of
NewPropertyInterface()) is not destroyed upon calling of this function. It is the API user responsibility to free it
using FreeValueInterface(). Returns false if the deallocation failed.

Member Functions Documentation

label_c get_label () const
Gets the property’s label.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

71

metadata_list *get_dic_metadata_sets () const
Returns a list of all the possible metadata sets that can be used has a value of this property. If the property is not a
set, the list will be empty. User is responsible for the deletion of the list returned.

const I_value *get_value () const
Gets the property’s value.

bool free_metadata_sets (metadata_list *) const

Frees the list returned by get_dic_metadata_sets(). Returns true if successful.

6.4 I_value Class Reference

#include <I_value.hpp>

This class stores the value of a property (a memory pointer of a given type).

Public Member Functions

const uint8_t *get_data () const
size_t get_size () const
value_type get_type () const

Constructor and Destructor Documentation

bool NewValueInterface (I_value **, value_type, size_t, const uint8_t *)
Retrieves a pointer on an I_value interface. The second parameter defines the MXF type of this value; the third one
its size in bytes and finally the fourth one is a memory pointer on the data. Return false if the allocation failed.

bool FreeValueInterface(I_value **)
Frees an I_value interface. The data (const uint8_t* parameter of NewValueInterface()) is not destroyed upon
calling of this function. It is the API user responsibility to free it. Return false if the deallocation failed.

Member Functions Documentation

const uint8_t *get_data () const
Gets a memory pointer on the value’s data. This pointer should be directly cast into the appropriate type depending
on the return value of the function get_type()). Returned pointer must not be deleted.

size_t get_size () const
Gets the size in bytes of the data pointed by get_data().

value_type get_type () const
Gets the MXF type of this value.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

72

Related Documentation

enum value_type

MXF_BOOLEAN int8_t[1]
MXF_INT8 int8_t[1]
MXF_INT16 int16_t[1]
MXF_INT32 int32_t[1]
MXF_INT64 int64_t[1]
MXF_UINT8 uint8_t[1]
MXF_UINT16 uint16_t[1]
MXF_UINT32 uint32_t[1]
MXF_UINT64 uint64_t[1] (also used with MXF types Position and Length [377M])
MXF_UUID uint8_t[16] (also used with MXF type UL [377M])
MXF_UMID32 I_umid*
MXF_UMID64 I_umid64*
MXF_RATIONAL uint32_t[2] (numerator / denominator)
MXF_TIMESTAMP uint16_t[7] (year / month / day / hour / min / sec / millisec/4)
MXF_ISO7_STRING char[n]
MXF_UTF16_STRING wchar_t[n] (sizeof(wchar_t) = 2 on Linux, =4 on Windows).
MXF_PRODUCT_VERSION uint16_t[5] (major / minor / patch / build / release)
MXF_STRONG_REF I_metadata*
MXF_WEAK_REF I_metadata*
MXF_ARRAY_BOOLEAN int8_t[n] (ARRAY also used for MXF type Batch [377M])
MXF_ARRAY_INT8 int8_t[n]
MXF_ARRAY_INT16 int16_t[n]
MXF_ARRAY_INT32 int32_t[n]
MXF_ARRAY_INT64 int64_t[n]
MXF_ARRAY_UINT8 uint8_t[n]
MXF_ARRAY_UINT16 uint16_t[n]
MXF_ARRAY_UINT32 uint32_t[n]
MXF_ARRAY_UINT64 uint64_t[n]
MXF_ARRAY_UUID uint16_t[16*n]
MXF_ARRAY_STRONG_REF I_metadata*[n]
MXF_ARRAY_WEAK_REF I_metadata*[n]
MXF_ARRAY_UMID32 I_umid*[n]

 MXF_ARRAY_UMID64 I_umid64*[n]
MXF_UNKNOWN type not recognized by MXFTk

This enumeration defines all the types available in an MXF file. The glossary [377M] describes them precisely. The
list enumerated just above links the MXF type to its C++ typedef (the variable n defines a positive integer). The
pointer returned by get_data() shall be cast into the appropriate type listed above. MXF_STRONG_REF,
MXF_WEAK_REF, MXF_ARRAY_STRONG_REF and MXF_ARRAY_WEAK_REF types enable the
construction of an I_metadata tree.

bool iso7_to_utf16 (wchar_t *, const char *, int)
bool utf16_to_iso7 (char *, const wchar_t *, int)

These functions convert an ISO7 string into a Unicode UTF16 string and vice versa. The integer states the number
of characters in the string to be converted (not its length in bytes).
Warning: converting an UTF16 sting into an ISO7 string is not always possible.
Warning: On Linux platform, wchar_t type is four bytes long. Therefore only two bytes from each wchar_t will be
effectively used when manipulating UTF16 string.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

73

6.5 I_umid Class Reference

#include <I_umid.hpp>

This class describes a UMID identifying universally and uniquely a material. It may contain geographical and date
information. It may also indicate who or what generated this material. MXFTk supplies this class to let the API user
specifies its own values of UMID; however it can be simply ignored in which case MXFTk will generate default
values.

Public Member Functions

const uint8_t *get_ptr () const
const char *get_str () const

Constructor and Destructor Documentation

bool NewUmidInterfaceByArray (I_umid **, uint8_t *)
Retrieves a pointer on an I_umid interface. The second parameter contains the memory address of a 32-byte long
buffer containing the UMID value. This buffer can be freed after calling this function. Returns false if the allocation
failed.

bool NewUmidInterfaceByString (I_umid **, const char *)

Retrieves a pointer on an I_umid interface. The second parameter is the UMID value stored in a string. It represents
32 bytes in a hexadecimal form, each byte being separated by a dot. Returns false if the allocation failed.

bool FreeUmidInterface (I_umid **)
Frees an I_umid interface. Returns false if the deallocation failed.

Member Functions Documentation

const uint8_t *get_ptr () const
Returns the memory address of a 32-byte long buffer containing the UMID value. This buffer must not be edited or
deleted.

const char *get_str () const
Returns a string containing the value of this UMID. It represents 32 bytes in a hexadecimal form, each byte being
separated by a dot. Returned pointer must not be deleted.

6.6 I_umid64 Class Reference

#include <I_umid.hpp>

This class describes a 64-byte UMID universally and uniquely identifying a material. It may contain geographical and
date information. It may also indicate who or what generated this material. MXFTk supplies this class to let the API
user specifies its own values of UMID; however it can be simply ignored in which case MXFTk will generate default
values. 64-byte UMID is used by the Descriptive Metadata Scheme 1 (DMS1).

Public Member Functions

const uint8_t *get_ptr () const
const char *get_str () const

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

74

Constructors and Destructor Documentation

bool NewUmid64InterfaceByArray (I_umid64 **, uint8_t *)
Retrieves a pointer on an I_umid64 interface. The second parameter contains the memory address of a 64-byte
long buffer containing the UMID value. This buffer can be freed after calling this function. Returns false if the
allocation failed.

bool NewUmid64InterfaceByString (I_umid64 **, const char *)
Retrieves a pointer on an I_umid64 interface. The second parameter is the UMID value stored in a string. It
represents 64 bytes in a hexadecimal form, each byte being separated by a dot. Returns false if the allocation failed.

bool FreeUmid64Interface (I_umid64 **)
Frees an I_umid64 interface. Returns false if the deallocation failed.

Member Functions Documentation

const uint8_t *get_ptr () const
Returns the memory address of a 64-byte long buffer containing the UMID value. This buffer must not be edited or
deleted.

const char *get_str () const
Returns a string containing the value of this UMID. It represents 64 bytes in a hexadecimal form, each byte being
separated by a dot. Returned pointer must not be deleted.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

75

7. Timecode Material
Timecode material allows the definition of the timecode used while playing an I_generic_material or an
I_concrete_material. When added to an I_generic_material it corresponds to the file “play out” and must be
continuous (no timecode redefinition while playing). When added to an I_concrete_material it corresponds to the file
“play in” of the data embedded in the file and can be discontinuous. MXFTk generates default timecode materials so
that the user does not necessarily need to define them. Only MXFTk Advanced version will let you redefine the
timecode of your MXF files.

7.1 I_timecode_material Class Reference

#include <I_timecode_material.hpp>

An I_timecode_material is an interface representing a timecode track. Therefore, it is defined by an origin, a duration
and an edit rate. Timecode material schematizes the timecode in use while playing the corresponding generic material.

Public Member Functions

bool append_timecode_component (I_timecode_component *)
bool free_timecode_list (ordered_timecode_list *)
rational *get_edit_rate ()
int64_t get_origin () const
ordered_timecode_list *get_timecode_list ()
int64_t get_total_duration () const

Constructor and Destructor Documentation

bool NewTimecodeMaterialInterface (I_timecode_material **, int64_t, rational *)
Retrieves a pointer on an I_timecode_material interface. The second parameter defines the starting edit unit
(origin) of the timecode track created. The third parameter specifies its edit rate while the duration will be
automatically computed as I_timecode_component will be added to this material
(append_timecode_component()). Returns false if the allocation failed.

bool FreeTimecodeMaterialInterface (I_timecode_material **)
Frees an I_timecode_material interface. Returns false if the deallocation failed.

Member Functions Documentation

void append_timecode_component (I_timecode_component *)
Adds to the end of the timecode track a new timecode definition. In most cases, a unique I_timecode_material
should be embedded in an I_timecode_material. This ensures continuity while playing the audiovisual material
(requirement of MXF file play out). Timecode redefinition (adding several I_timecode_component) lets you
create discontinuous timelines. You may set the duration of the I_timecode_component to -1 in order to leave
MXFTk compute it automatically whenever possible.

void free_timecode_list (ordered_timecode_list *)
Frees the list returned by get_timecode_list().

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

76

rational *get_edit_rate ()

Gets the edit rate of the underlying timecode track.
Warning: the edit rate of a timecode track is not necessarily equal to the frame rate of its timecode components.

int64_t get_origin () const
Gets the origin of the timecode track measured in edit units.

ordered_timecode_list *get_timecode_list ()
Retrieves the ordered list of I_timecode_component from this timecode track. A timecode component states a
starting timecode and duration. Therefore, adjacent I_timecode_component define an I_timecode_material just
as adjacent I_track_item define an I_track.

int64_t get_total_duration () const
Gets the timecode track duration measured in edit units.

7.2 I_timecode Class Reference

#include <I_timecode.hpp>

This class represents a timecode value; in other words a time instance expressed in the following format
“hour:minute:second:frame". This structure is used to create timecode components of an I_timecode_material or to
access audiovisual data at a given timecode.

Public Member Functions

bool add (uint64_t)
bool equal_to (I_timecode *) const
bool get_drop_frame () const
uint8_t get_frame () const
uint64_t get_frame_count ()
uint16_t get_frame_rate () const
uint8_t get_hour () const
uint8_t get_minute () const
uint8_t get_second () const
const char * get_time () const
bool greater_than (I_timecode *) const
bool next ()
bool previous ()
bool smaller_than (I_timecode *) const
bool sub (uint64_t)

Constructor and Destructor Documentation

bool CopyTimecodeInterface (I_timecode **, const I_timecode *)
Copies an I_timecode interface. Returns false if the copy failed.

bool NewTimecodeInterface (I_timecode **, const char *, uint16_t, bool)
Retrieves a pointer on an I_timecode interface. The second parameter is a string defining the timecode value
according to the following rule: “XX:XX:XX:XX” (“05:14:00:08” for instance). The third parameter specifies the
frame rate of this timecode and the last Boolean value states whether it is a drop frame timecode (drop frame
timecode is only allowed with 25, 30 or 60 frames per second). Returns false if the allocation failed.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

77

bool NewTimecodeInterfaceByValue (I_timecode **, uint16_t, uint16_t, uint16_t, uint16_t, uint16_t,
bool)

Retrieves a pointer on an I_timecode interface. uint16_t parameters are respectively the hour, minute, second,
frame and frame rate of this timecode. The last Boolean value states whether it is a drop frame timecode (drop
frame timecode is only allowed with 25, 30 or 60 frames per second). Returns false if the allocation failed.

bool FreeTimecodeInterface(I_timecode **)
Frees an I_timecode interface. Returns false if the deallocation failed.

Member Functions Documentation

bool add (uint64_t)
Adds a given number of frames to the current timecode value. Returns false if an error occurred.

bool equal_to (I_timecode *) const
Returns true if the current timecode is equal to the timecode specified, false otherwise.

bool get_drop_frame () const
State whether a drop frame timecode is in use.

uint8_t get_frame () const
Returns the frame digits of this timecode. If timecode is 05:25:13:24 it will return 24.

uint64_t get_frame_count () const

Returns the timecode value as a number of frames elapsed from timecode 00:00:00:00. For instance, if the timecode
value is 00:02:10:14 and the frame rate is 25, the returned value will be 2*60*25+10*25+14+1 = 3265.

uint16_t get_frame_rate () const

Get the frame rate of this timecode.

uint8_t get_hour () const
Returns the hour digits of this timecode. If timecode is 05:25:13:24 it will return 5.

uint8_t get_minute () const

Returns the minute digits of this timecode. If timecode is 05:25:13:24 it will return 25.

uint8_t get_second () const

Return the second digits of this timecode. If timecode is 05:25:13:24 it will return 13.

const char *get_time () const

Gets the current timecode value as a string. Returned pointer must not be deleted.

bool greater_than (I_timecode *) const
Returns true if the current timecode is greater than the timecode specified, false otherwise.

bool next ()
Increases current timecode.

bool previous ()
Decreases current timecode.

bool smaller_than (I_timecode *) const
Returns true if the current timecode is smaller than the timecode specified, false otherwise.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

78

void sub (int64_t)
Subtracts a given number of frames to the current timecode value.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

79

8. Streaming
The following classes should be used when manipulating MXF files in a streaming environment (IEEE 1394 port,
videotape recorder, etc.). MXFTk lets you stream the input audiovisual data, the descriptive metadata and the MXF
files being generated or read. When wrapping an MXF file you may even receive the audiovisual data and the
descriptive metadata from several streams while outputting the MXF stream on the fly. MXFTk user is strongly invited
to refer to the examples “active_stream_wrapper”, “passive_stream_wrapper”, “mxf_stream_unwrapper” and
“op1a_stream_wrapper”. It is also best to feel comfortable with MXF file wrapping/unwrapping in a non-streaming
environment before going through this chapter.
All the following classes are pure virtual classes that the user must implement. They work as a set of functions that
MXFTk will call whenever he needs some information or data from the corresponding streaming device. Therefore,
MXFTk user is entitled to implement these classes to feed MXFTk with data whenever it needs to.

8.1 I_essence_stream_task Class Reference

#include <streaming.hpp>

This class should be used when the audiovisual data used to build an I_concrete_material is originating from a
streaming device (for instance when receiving the stream of a video tape and wrapping it on-the-fly in an MXF file).
MXFTk user is entitled to derive this class in order to provide an implementation for the streaming device.

Public Member Functions

bool get_active_blocking_mode (unsigned int)
size_t data_request (unsigned int, uint8_t *, size_t)
size_t get_buffer_size (unsigned int)
bool get_passive_mode ()
void get_stream_info (unsigned int, essence_source &, bool &, unsigned int &)
void get_mpeg_es_info (unsigned int, unsigned int, bool &)
unsigned int get_total_number_of_streams ()
void get_audio_mxf_file_descriptor (unsigned int, I_mxf_file_descriptor *&descriptor)
void get_video_mxf_file_descriptor (unsigned int, I_mxf_file_descriptor *&descriptor)
uint64_t stream_size (unsigned int)
int64_t duration (unsigned int)

Member Functions Documentation

bool get_active_blocking_mode (unsigned int)
This function is called before launching the streaming process. It should return true if you choose to perform the
streaming task for the designed track (unsigned int parameter) in the blocking mode. This mode will be effective
only if you also set the active streaming mode thanks to the function get_passive_mode().

• BLOCKING MODE: MXFTk performs no copy of the buffer sent by the user. User should call the
function I_concrete_material::write() in order to feed MXFTk with data. It will return from the function
only once the data has been entirely written. Because there is no buffering, the data must be sent in the
exact way it will be wrapped. This means the buffers should be sent frame by frame, one after the other in
the order they will be wrapped. The user may use the function I_mxf_file::waiting_stream() in order to
have a guideline to figure out the order in which it should send the data.

• BUFFERING MODE: The data sent to MXFTk is immediately copied and bufferized for later processing.
This mode is more convenient to use for the user has it does not need to care about the order and size of
buffers he sends to MXFTk. However it may be less efficient as it requires extra copies of buffer.

size_t data_request (unsigned int, uint8_t *, size_t)=0

This function is called whenever MXFTk requests data from the stream. The first parameter is the stream identifier
(comprised between 0 and get_total_number_of_streams()-1). It is used to keep a reference on the stream during

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

80

successive calls to data_request(). The second parameter is the buffer where the data sent to MXFTk should be
written. The third parameter indicates how many bytes are required (and hence ideally it is also the size of the
buffer passed (second parameter). Finally the value returned should indicate how many bytes have been written in
the buffer. Users of previous MXFTk versions should be careful as it is no longer required to call the
I_concrete_material::write() function to feed MXFTk.
This function will be called regularly upon flushing of the MXF file to notify the user that the flushing process is in
wait of data from the streaming device. A correct implementation should stop the current process using a mutex as
long as the requested data is not available from the stream. Once ready, the data should be written in the buffer
provided. Finally, if no more data is to be received then this should also be notified by returning 0 from the
function.

size_t get_buffer_size (unsigned int)=0
This function is called before launching the streaming process. It gives the opportunity to set the size of MXFTk’s
internal buffer used to store the data received from the stream. You may define a different size for each stream id.
Depending on your system, changing the buffer’s size may help to improve your performances. It is always better
to increase the size of the buffers in order to handle throughput variations. This function will be called only once for
each stream id, the size cannot be changed during the streaming process.

bool get_passive_mode ()=0

This function is called before launching the streaming process. It should return true if you choose to perform the
streaming task in passive mode or false if you choose active mode:

• PASSIVE MODE: MXFTk calls the function data_request() whenever it requires some data. You must
provide an implementation of the function data_request() in that case and you should perform the
I_concrete_material::write() calls only within this function. MXFTk controls the wrapping and you may
send data only when it notifies you to do so.

• ACTIVE MODE: You can send data to MXFTk whenever you want still using the function
I_concrete_material::write(). You do not need to implement the function data_request() in that case
and you must send the data after calling the function I_mxf_file::flush().

bool get_stream_info (unsigned int, essence_source &, bool &, unsigned int &)

You must implement this function. For performance reasons, MXFTk needs you to specify the nature of the stream
you will send. This function lets you do so. The first parameter is the stream id. The second parameter defines the
type of the essence for this stream id (DV, MPEG, etc… refer to I_essence_type for a complete list of possible
types). The third parameter indicates if it is a video or audio stream. However in the case of a DV stream it is used
to know if the audio from the DV should appear as a track in the MXF file. If set to true, the audio from the DV will
be ignored. Finally the last parameter is only used when the input stream is a MPEG Program or Transport Stream
and is used to indicate how many MPEG Elementary Streams they embed.

bool get_mpeg_es_info (unsigned int, unsigned int, bool &)

You must implement this function if one of the input streams is an MPEG Program Stream or Transport Stream.
The first parameter identifies the stream and the second one identifies the “elementary streams” from the MPEG PS
or TS. Its value ranges from 0 to the number of sub-streams set in get_stream_info. There is no relation between
this id and the id of the MPEG ES stored in the MPEG stream. The Boolean should be set to true if the
corresponding sub-stream is a video stream or set to false if it is an audio one.

unsigned int get_total_number_of_streams ()
This function is called before launching the streaming process. It is used to set the total number of streams that will
be embedded on the I_concrete_material being created (just as several files may be required to build a concrete
material).

void get_audio_mxf_file_descriptor (unsigned int, I_mxf_file_descriptor *&descriptor)
This function is called before launching the streaming process. The user may use this function in order to build the
audio essence descriptor corresponding to the stream id provided (first parameter). Most of the time, you will not
need to implement this function as MXFTk is capable to build descriptors by analyzing the content of the data you
will send. However when wrapping essences from which descriptors cannot be constructed directly from the
essence content (Uncompressed raw files, PCM data without header, etc…) user will need to build the descriptors

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

81

to create a valid MXF file.

void get_video_mxf_file_descriptor (unsigned int, I_mxf_file_descriptor *&descriptor)
This function is called before launching the streaming process. The user may use this function in order to build the
video essence descriptor corresponding to the stream id provided (first parameter). Most of the time, you will not
need to implement this function as MXFTk is capable to build descriptors by analyzing the content of the data you
will send. However when wrapping essences from which descriptors cannot be constructed directly from the
essence content (Uncompressed raw files, PCM data without header, etc…) user will need to build the descriptors
to create a valid MXF file.

uint64_t stream_size (unsigned int)
This function can be implemented in order to set the total size in bytes of the stream that will be wrapped.

int64_t duration (unsigned int)

This function can be implemented in order to set the total duration in edit units of the stream that will be wrapped.

8.2 I_crypted_essence_stream_task Class Reference

#include <streaming.hpp>

This class should be used when the audiovisual data used to build an I_concrete_material is originating from a
streaming device (for instance when receiving the stream of a video tape and wrapping it on-the-fly in an MXF file)
and should be crypted. MXFTk user is entitled to derive this class in order to provide an implementation for his
streaming device.

Public Member Functions

const uint8_t * get_cipher_key (unsigned int)
const uint8_t * get_cryptographic_key_id (unsigned int)
bool do_crypt (unsigned int)
uint32_t get_plaintext_offset (unsigned int)

Member Functions Documentation

const uint8_t * get_cipher_key (unsigned int)
Implement this function so that it returns the cipher key that will be used to encrypt the stream with the
corresponding stream id (first parameter).

const uint8_t * get_cryptographic_key (unsigned int)
Implement this function so that it returns the cryptographic key that will be used to encrypt the stream with the
corresponding stream id (first parameter).

bool do_crypt (unsigned int)
Implement this function so that it returns true if the stream with the corresponding stream id (parameter) must be
encrypted.

uint32_t get_plaintext_offset (unsigned int)

Implement this function so that it returns the plaintext offset that will be used to encrypt the stream with the

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

82

corresponding stream id (first parameter). The plaintext offset is the offset to the crypted data within a frame.

8.3 I_input_metadata_stream_task Class Reference

#include <streaming.hpp>

This class should be used when the descriptive metadata to be embedded on an MXF file is originating from a
streaming device. MXFTk user is entitled to derive this class in order to provide an implementation for the
corresponding streaming device.

Public Member Functions

void update (I_generic_material *, I_track *, int64_t)

Member Functions Documentation

virtual void update (I_generic_material *, I_track *, int64_t)=0
This function is called by MXFTk whenever some descriptive metadata can be written in the MXF file being
created. It is called when a new partition is created. Therefore, it is mandatory to understand that the “key”
parameters to use efficiently this function are HEADER_REPETITION and
PREFERRED_PARTITION_DURATION that can be set thanks to the function I_mxf_file:set_parameter().
The larger the partition size, the less often this function update() will be called. On the contrary, the smaller the
partition size, the more often the user will have the opportunity to update the file. However, increasing the number
of partitions in your file may severely impact the overall performances.
The first and second parameter are respectively the I_generic_material and the I_track (metadata track) to be
updated; while the int64_t is the current position (in edit units) on this descriptive metadata track. It is perfectly
valid not to add metadata or update the descriptive metadata and simply returning from this function.

8.4 I_output_mxf_stream_task Class Reference

#include <streaming.hpp>

This class should be used when the MXF file being created needs to be retrieved on-the-fly. This can be the case, when
sending the MXF stream to an MXF videotape recorder. MXFTk user is entitled to derive this class in order to provide
an implementation for the corresponding streaming device. Calls to this class will be performed only during the
I_mxf_file::flush() process.

Public Member Functions

void data_to_read (const uint8_t *, size_t)
bool seekable ()
uint64_t seekpos_request (uint64_t)

Member Functions Documentation

void data_to_read (const uint8_t *, size_t)
This function is called by MXFTk to notify that its internal output buffer is filled and that the MXF data is ready to
be sent to the streaming device. The first parameter is a pointer on the MXF buffer and the second one is the number
of bytes to be read from this buffer. MXFTk user should not free this buffer! After exiting this function, MXFTk
always assume that all the data was read. Therefore, if your streaming device is not ready to receive this data you
should make use of a mutex to stop the current process as long as necessary. In order to notify the end of the MXF
stream and that no more data will be sent, the API will call this function with a NULL buffer.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

83

bool seekable ()

This function is called by MXFTk to know if it will be allowed to seek in the output MXF stream. When wrapping
an OpZero MXF file, it is mandatory to set the stream as seekable or the creation of the file will be impossible.
Other types of MXF files do not necessarily require a seekable stream but allowing seek operations can help to
produce closed and complete MXF files.

uint64_t seekpos_request (uint64_t)
Implement this function if you defined the stream as seekable. The parameter is the absolute position where the
seek operation should be performed and the returned value should contain the position that was effectively reached.

8.5 I_input_mxf_stream_task Class Reference

#include <streaming.hpp>

This class should be used when the MXF file is received from a streaming device. This can be the case, when receiving
the output signal of an MXF videotape player. MXFTk user is entitled to derive this class in order to provide an
implementation for the corresponding streaming device. Calls to this class will be performed only during the
I_mxf_file creation process. It also provides interfaces for seeking data to a given timecode on the streaming device.
Due to their internal construction, some MXF files are not truly streamable. This would be the case when the video and
audio data meant to be played together are both clip wrapped in the file. Because the reading of the file will be
performed linearly, MXFTk will first read all of the video before reaching the audio. When building files to be read in
a streaming environment, it is always best to avoid high operational patterns and to perform a frame wrapping of all the
audiovisual data (the sources will be multiplexed so that they can be played simultaneously). You may also use this
class to perform the update of an MXF file read from a streaming device.

Public Member Functions

void data_to_read (I_generic_material *, I_track *, I_source_clip *, uint64_t)
void data_request (I_mxf_file *, size_t)
size_t get_buffer_size ()
uint64_t seekpos_request (uint64_t)
I_timecode *seek_timecode (I_generic_material *, bool&)
bool seekable ()
void last_partition_offset (uint64_t)
uint64_t stream_size ()
void updated_data (const uint8_t *, size_t)
bool updated_mxf_file (I_mxf_file *, bool closed, bool complete, uint64_t mxf_stream_pos)

Member Functions Documentation

void data_to_read (I_generic_material *, I_track *, I_source_clip *, uint64_t)
This function is called by MXFTk to notify that some data is ready to be read on the I_source_clip from the given
I_track in the given I_generic_material. The uint64_t parameter indicates the number of bytes to be read (size of
the edit unit to be read). The data can be read with a single call to the function I_source_clip::read_eu. Seek
functions of the source clip should not be used. If your system is not ready to read this data, the current process
should be stopped as long as necessary.

void data_request (I_mxf_file *, size_t)
This function is called whenever MXFTk requests data from the MXF stream in order to continue the unwrapping
process. The size_t parameter states how many bytes the internal buffer is waiting for. Calls to I_mxf_file::write
should be performed once the data is ready. If the streaming device is not ready, then the current process should be
stopped as long as necessary. When no more data is to be received, an explicit call to I_mxf_file::end_of_stream

must be performed.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

84

size_t get_buffer_size ()

This function is called before launching the streaming process. It gives the opportunity to set the size of MXFTk’s
internal buffer used to store the data received from the MXF stream. Depending on your system, changing the
buffer’s size may help to improve your performances. This function will be called only once, the size cannot be
changed during the streaming process.

uint64_t seekpos_request (uint64_t)

User should implement this function only if the MXF streaming device has the capability to seek. During a linear
streaming process, MXFTk will not call this function. This will occur only following and explicit seeking request
from the user (thanks to the function seek_timecode()). The uint64_t parameter gives the absolute position where
the streaming device should seek. Returned value should be the requested position. If you choose not to implement
this function, seek_timecode() should always return NULL.

I_timecode *seek_timecode (I_generic_material *, bool&)
This function will be regularly called by MXFTk to give the opportunity to continue the MXF unwrapping process
from a user-defined timecode. The streaming device should have the capability to seek and if the user chooses to
implement this function, seekpos_request() must be implemented as well. The function should return the timecode
to reach (relative to the timecode material of the parameter I_generic_material) or NULL if the unwrapping
process should continue linearly from the current timecode. It is not possible to seek a timecode that has not been
reached so far. You can set the value of the second parameter to true; this will force the streaming process to stop
immediately.

bool seekable ()
You should implement this function to let MXFTk knows if it is allowed to perform seek operations on this stream.
Allowing seek operations may speed up the decoding process. If the function returns true, then you must provide
your implementation of seekpos_request() and stream_size(). The return value of this function cannot be changed
during the MXF decoding process. Note that the update of an MXF file in a streaming environment can only be
performed if the stream is seekable. Hence in that case, this function should return true and you must implement
seekpos_request().

void last_partition_offset (uint64_t)

MXFTk calls this function whenever a new header metadata is being decoded. The parameter specifies the offset in
the stream to reach the beginning of the partition containing this header metadata.

uint64_t stream_size ()
This function will be called by MXFTk to retrieve the total size of the stream. If this value cannot be evaluated, the
function should always return 0. Specifying the size of the stream may speed up the decoding process. You must
return the correct size of the stream if you set it to be seekable.

void updated_data (const uint8_t *, size_t)
You need to implement this function only if you are performing an update of the MXF file. MXFTk will call this
function regularly while updating the file. It sends you a buffer and its size to be written at the current location of
the stream.

bool updated_mxf_file (I_mxf_file *, bool closed, bool complete, uint64_t mxf_stream_pos)
The structure of an MXF file being streamed is likely to be changed during the decoding process. Several instances
of the header metadata containing both the structural and descriptive metadata can be found in an MXF file. This is
usually done to reflect the changes that occurred on the file while it was recorded. Therefore, the truthful header
metadata is generally found at the end of the file. However, during a linear streaming process, this one cannot be
reached before processing all the data; therefore MXFTk will regularly send updated version of the header
metadata whenever a new one is detected. This lets the API user starts the decoding process although part of the
information is missing. When MXFTk calls this function, previous I_mxf_file should be considered as outdated
and previous references to objects or interfaces should be ignored.
However, to help the user two Boolean values indicate if the I_mxf_file structure is still likely to change. If closed,

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

85

then the overall structure will not change (no more tracks or materials will be added or removed for instance) but
some values are probably still missing (this is notably the case for the duration of the tracks). If the file is closed and
complete, no more updates will occur, the I_mxf_file is entirely valid.
The uint64_t gives the number of bytes read from the MXF streaming device so far.
The function should return true if you wish to stop the decoding process. This is useful if you are not interested in
the essence and want to stop the process as soon as you found a valid header metadata.

8.6 I_input_partial_mxf_stream_task Class Reference

#include <streaming.hpp>

This class should be used when the MXF file to partial restore is received from a streaming device. This can be the
case, when receiving the output signal of an MXF videotape player. MXFTk user is entitled to derive this class in order
to provide an implementation for the corresponding streaming device. Calls to this class will be performed only during
the I_mxf_file partial restore process.

Public Member Functions

void data_request (I_mxf_file *, size_t)
size_t get_buffer_size ()
uint64_t seekpos_request (uint64_t)
bool seekable ()
uint64_t stream_size ()

Member Functions Documentation

void data_request (I_mxf_file *, size_t)
This function is called whenever MXFTk requests data from the MXF stream in order to continue the partial restore
process. The size_t parameter states how many bytes the internal buffer is waiting for. Calls to I_mxf_file::write
should be performed once the data is ready. If the streaming device is not ready, then the current process should be
stopped as long as necessary. When no more data is to be received, an explicit call to I_mxf_file::end_of_stream

must be performed.

size_t get_buffer_size ()
This function is called before launching the streaming process. It gives the opportunity to set the size of MXFTk’s
internal buffer used to store the data received from the MXF stream. Depending on your system, changing the
buffer’s size may help to improve your performances. This function will be called only once, the size cannot be
changed during the streaming process.

uint64_t seekpos_request (uint64_t)

User should implement this function only if the MXF streaming device has the capability to seek. The uint64_t
parameter gives the absolute position where the streaming device should seek. Returned value should be the
requested position.

bool seekable ()

You should implement this function to let MXFTk knows if it is allowed to perform seek operations on this stream.
Allowing seek operations is likely to speed up the partial restore process. If the function returns true, then you must
provide your implementation of seekpos_request() and stream_size(). The return value of this function cannot be
changed during the MXF decoding process.

uint64_t stream_size ()

This function will be called by MXFTk to retrieve the total size of the stream. If this value cannot be evaluated, the
function should always return 0. Specifying the size of the stream is likely to speed up the partial restore process.
You must return the correct size of the stream if you set it to be seekable.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

86

9. Essence Descriptors
The following classes can be used to create the complete essence descriptors. Most of the time, you will not need to
implement this function because MXFTk can build them automatically by analyzing the source files to be wrapped.
However, in certain cases, this information can not be retrieved from the source stream. In that case, the user should
build these classes in order to create a valid MXF file. In this manual we will not go through the definitions of all the
properties set in the descriptors but we invite the reader to refer to the corresponding norms for a complete reference.

9.1 I_mxf_file_descriptor Class Reference

#include <I_mxf_file_descriptor.hpp>

Public Member Functions

void set_sample_rate (const uint32_t numerator, const uint32_t denominator)
void set_container_duration (const uint64_t)
void set_essence_container_ul (const char *)
void set_codec_ul (const char *)
void add_subdescriptor (const I_mxf_subdescriptor *)

Constructor and Destructor Documentation

bool NewMxfFileDescriptorInterface (I_mxf_file_descriptor **)
Retrieves a pointer on an I_mxf_file_descriptor interface. Returns false if the allocation failed.

bool FreeMxfFileDescriptorInterface (I_mxf_file_descriptor **)
Frees an I_mxf_file_descriptor interface. Returns true if successful.

9.2 I_mxf_generic_picture_essence_descriptor Class Reference

#include <I_mxf_file_descriptor.hpp>

Public Member Functions

void set_signal_standard (const uint8_t)
void set_frame_layout (const uint8_t)

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

87

void set_stored_width (const uint32_t)
void set_stored_height (const uint32_t)
void set_stored_f2_offset (const int32_t)
void set_sampled_width (const uint32_t)
void set_sampled_height (const uint32_t)
void set_sampled_x_offset (const int32_t)
void set_sampled_y_offset (const int32_t)
void set_display_width (const uint32_t)
void set_display_height (const uint32_t)
void set_display_x_offset (const int32_t)
void set_display_y_offset (const int32_t)
void set_display_f2_offset (const int32_t)
void set_aspect_ratio (const uint32_t, const uint32_t)
void set_active_format_descriptor (const uint8_t)
void set_video_line_map (const int32_t, const int32_t)
void set_alpha_transparency (const uint8_t)
void set_capture_gamma_ul (const char *)
void set_image_alignment_offset (const uint32_t)
void set_image_start_offset (const uint32_t)
void set_image_end_offset (const uint32_t)
void set_field_dominance (const uint8_t)
void set_picture_essence_coding_ul (const char *)

Constructor and Destructor Documentation

bool NewMxfGenericPictureEssenceDescriptorInterface
(I_mxf_generic_picture_essence_descriptor **)

Retrieves a pointer on an I_mxf_generic_picture_essence__descriptor interface. Returns false if the allocation
failed.

bool FreeMxfGenericPictureEssenceDescriptorInterface
(I_mxf_generic_picture_essence_descriptor **)

Frees an I_mxf_generic_picture_essence_descriptor interface. Returns true if successful.

9.3 I_mxf_cdci_picture_essence_descriptor Class Reference

#include <I_mxf_file_descriptor.hpp>

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

88

Public Member Functions

void set_component_depth (const uint32_t)
void set_horizontal_subsampling (const uint32_t)
void set_vertical_subsampling (const uint32_t)
void set_color_siting (const uint8_t)
void set_reversed_byte_order (const bool)
void set_padding_bits (const int16_t)
void set_alpha_sample_depth (const uint32_t)
void set_black_ref_level (const uint32_t)
void set_white_ref_level (const uint32_t)
void set_color_range (const uint32_t)

Constructor and Destructor Documentation

bool NewMxfCDCIPictureEssenceDescriptorInterface (I_mxf_cdci_picture_essence_descriptor **)
Retrieves a pointer on an I_mxf_cdci_picture_essence__descriptor interface. Returns false if the allocation
failed.

bool FreeMxfCDCIPictureEssenceDescriptorInterface (I_mxf_cdci_picture_essence_descriptor **)
Frees an I_mxf_cdci_picture_essence_descriptor interface. Returns true if successful.

9.4 I_mxf_mpeg2_video_descriptor Class Reference

#include <I_mxf_file_descriptor.hpp>

Public Member Functions

void set_single_sequence (const bool)
void set_constant_b_frames (const bool)
void set_coded_content_type (const uint8_t)
void set_low_delay (const bool)
void set_closed_gop (const bool)
void set_identical_gop (const bool)
void set_max_gop (const uint16_t)
void set_b_picture_count (const uint16_t)
void set_bit_rate (const uint32_t)
void set_profile_and_level (const uint8_t)

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

89

Constructor and Destructor Documentation

bool NewMxfMpeg2VideoDescriptorInterface (I_mxf_mpeg2_video_descriptor **)
Retrieves a pointer on an I_mxf_mpeg2_video_descriptor interface. Returns false if the allocation failed.

bool FreeMxfMpeg2VideoDescriptorInterface (I_mxf_mpeg2_video_descriptor **)
Frees an I_mxf_mpeg2_video_descriptor interface. Returns true if successful.

9.5 I_mxf_rgba_picture_essence_descriptor Class Reference

#include <I_mxf_file_descriptor.hpp>

Public Member Functions

void set_component_max_ref (const uint32_t)
void set_component_min_ref (const uint32_t)
void set_alpha_max_ref (const uint32_t)
void set_alpha_min_ref (const uint32_t)
void set_scanning_direction (const uint8_t)
void set_pixel_layout (const uint8_t *, const uint32_t)
void set_palette (const uint8_t *, const uint32_t)
void set_palette_layout (const uint8_t *, const uint32_t)

Constructor and Destructor Documentation

bool NewMxfRGBAPictureEssenceDescriptorInterface (I_mxf_rgba_picture_essence_descriptor **)
Retrieves a pointer on an I_mxf_rgba_picture_essence _descriptor interface. Returns false if the allocation
failed.

bool FreeMxfRGBAPictureEssenceDescriptorInterface (I_mxf_rgba_picture_essence_descriptor **)
Frees an I_mxf_rgba_picture_essence_descriptor interface. Returns true if successful.

9.6 I_mxf_jpeg2000_picture_subdescriptor Class Reference

#include <I_mxf_file_descriptor.hpp>

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

90

Public Member Functions

void set_r_siz (const uint16_t)
void set_x_siz (const uint32_t)
void set_y_siz (const uint32_t)
void set_xo_siz (const uint32_t)
void set_yo_siz (const uint32_t)
void set_xt_siz (const uint32_t)
void set_yt_siz (const uint32_t)
void set_xto_siz (const uint32_t)
void set_yto_siz (const uint32_t)
void set_c_siz (const uint16_t)
void add_picture_component_sizing (const uint8_t, const uint8_t, const uint8_t)
void set_coding_style_default (const uint8_t *, const uint32_t)
void set_quantization_default (const uint8_t *, const uint32_t)

Constructor and Destructor Documentation

bool NewMxfJpeg2000PictureSubdescriptorInterface (I_mxf_jpeg2000_picture_subdescriptor **)
Retrieves a pointer on an I_mxf_jpeg2000_picture_subdescriptor interface. Returns false if the allocation failed.

bool FreeMxfJpeg2000PictureSubdescriptorInterface (I_mxf_jpeg2000_picture_subdescriptor **)
Frees an I_mxf_jpeg2000_picture_subdescriptor interface. Returns true if successful.

9.7 I_mxf_generic_sound_essence_descriptor Class Reference

#include <I_mxf_file_descriptor.hpp>

Public Member Functions

void set_audio_sampling_rate (const uint32_t, const uint32_t)
void set_locked_unlocked (const bool)
void set_audio_ref_level (const int8_t)
void set_electro_spatial_formulation (const uint8_t)
void set_channel_count (const uint32_t)
void set_quantization_bits (const uint32_t)
void set_dial_norm (const uint32_t)

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

91

void set_sound_essence_compression_ul (const char *)

Constructor and Destructor Documentation

bool NewMxfGenericSoundEssenceDescriptorInterface
(I_mxf_generic_sound_essence_descriptor**)

Retrieves a pointer on an I_mxf_generic_sound_essence_descriptor interface. Returns false if the allocation
failed.

bool FreeMxfGenericSoundEssenceDescriptorInterface
(I_mxf_generic_sound_essence_descriptor **)

Frees an I_mxf_generic_sound_essence_descriptor interface. Returns true if successful.

9.8 I_mxf_wave_audio_essence_descriptor Class Reference

#include <I_mxf_file_descriptor.hpp>

Public Member Functions

void set_block_align (const uint16_t)
void set_sequence_offset (const uint8_t)
void set_avg_bps (const uint32_t)
void set_channel_assignment_ul (const char *)
void set_peak_envelope_version (const uint32_t)
void set_peak_envelope_format (const uint32_t)
void set_points_per_peak_value (const uint32_t)
void set_peak_envelope_block_size (const uint32_t)
void set_peak_channels (const uint32_t)
void set_peak_frames (const uint32_t)
void set_peak_of_peaks_position (const uint64_t)
void set_peak_envelope_timestamp (const uint64_t)
void set_peak_envelope_data (const uint8_t *, const uint32_t)

Constructor and Destructor Documentation

bool NewMxfWaveAudioEssenceDescriptorInterface (I_mxf_wave_audio_essence_descriptor **)
Retrieves a pointer on an I_mxf_wave_audio_essence_descriptor interface. Returns false if the allocation failed.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

92

bool FreeMxfWaveAudioEssenceDescriptorInterface (I_mxf_wave_audio_essence_descriptor **)
Frees an I_mxf_wave_audio_essence_descriptor interface. Returns true if successful.

9.9 I_mxf_aes3_audio_essence_descriptor Class Reference

#include <I_mxf_file_descriptor.hpp>

Public Member Functions

void set_emphasis (const uint8_t)
void set_block_start_offset (const uint16_t)
void set_aux_bits_mode (const uint8_t)
void set_channel_status_mode (const uint8_t *, const uint32_t)
void set_fixed_channel_status_data (const uint8_t **, const uint32_t)
void set_user_data_mode (const uint8_t *, const uint32_t)
void set_fixed_user_data (const uint8_t **, const uint32_t)

Constructor and Destructor Documentation

bool NewMxfAes3AudioEssenceDescriptorInterface (I_mxf_aes3_audio_essence_descriptor **)
Retrieves a pointer on an I_mxf_aes3_audio_essence_descriptor interface. Returns false if the allocation failed.

bool FreeMxfAes3AudioEssenceDescriptorInterface (I_mxf_aes3_audio_essence_descriptor **)
Frees an I_mxf_aes3_audio_essence_descriptor interface. Returns true if successful.

9.10 I_mxf_generic_data_essence_descriptor Class Reference

#include <I_mxf_file_descriptor.hpp>

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

93

Public Member Functions

void set_data_essence_coding_ul (const char *)

Constructor and Destructor Documentation

bool NewMxfGenericDataEssenceDescriptorInterface (I_mxf_generic_data_essence_descriptor **)
Retrieves a pointer on an I_mxf_generic_data _essence_descriptor interface. Returns false if the allocation
failed.

bool FreeMxfGenericDataEssenceDescriptorInterface (I_mxf_generic_data_essence_descriptor **)
Frees an I_mxf_generic_data _essence_descriptor interface. Returns true if successful.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

94

10. Data Handling Interfaces
The following classes help manipulating the data from MXFTk. They are not used to define the structure of an MXF
file but rather provide tools useful to their writing and reading.

10.1 concrete_list Class Reference

#include <mxf_tk.hpp>

This class describes a list of I_concrete_material.

Public Member Functions

void begin ()
I_concrete_material **next ()
int64_t size ()

Member Functions Documentation

void begin ()
Places the internal iterator at the beginning of the list (before the first item of the list).

I_concrete_material **next ()
Increments the internal iterator and returns it. If the returned value is NULL then the end of the list has been
reached. The combined use of begin() and next() enables the traversal of the list. The end is reached as soon as
next() returns a NULL value.

int64_t size ()
Gets the number of I_concrete_material in the list.

10.2 generic_list Class Reference

#include <mxf_tk.hpp>

This class describes a list of I_generic_material.

Public Member Functions

void begin ()
I_generic_material **next ()
int64_t size ()

Member Functions Documentation

void begin ()
Places the internal iterator at the beginning of the list (before the first item of the list).

const char **next ()
Increments the internal iterator and returns it. If the returned value is NULL then the end of the list has been
reached. The combined use of begin() and next() enables the traversal of the list. The end is reached as soon as
next() returns a NULL value.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

95

int64_t size ()
Gets the number of I_generic_material in the list.

10.3 I_timecode_component Class Reference

#include <mxf_tk.hpp>

This class describes the constitutive item of an I_timecode_material (timecode track). A timecode track is made of
adjacent I_timecode_component ordered in a time-linear fashion. Each timecode component defines a starting
timecode value and a duration.

Public Member Functions

int64_t get_duration ()
I_timecode *get_timecode ()

Constructor Documentation

bool NewTimecodeComponentInterface (I_timecode_component **, I_timecode *, int64_t)
Retrieves a pointer on an I_timecode_component interface to be appended to a timecode material. The
I_timecode parameter specifies the new timecode as well as its duration measured in edit units of the targeted
timecode material. Returns false if the allocation failed.

Member Functions Documentation

int64_t get_duration ()
Gets the duration of the current I_timecode_component measured in edit units of the I_timecode_material it
belongs to.

I_timecode *get_timecode ()
Gets the starting timecode value of the current I_timecode_component. Returned pointer must not be deleted.

10.4 locators Class Reference

#include <mxf_tk.hpp>

This class lets you build a list of source files used upon creation of a new I_concrete_material. Note that when you
want to wrap in a single track a series af image you should call the function add() only once with the appropriate syntax
(please refer to I_concrete_material documentation)

Public Member Functions

void add (const char **)
void begin ()
I_metadata **next ()
int64_t size ()

Constructor and Destructor Documentation

bool GetEmptyLocatorInterface(locators**)
Retrieves an empty list of locators. Files can be added to this list using the function add(). Return false if the

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

96

allocation failed.

bool FreeLocatorInterface(locators**)
Frees a locators list. Return false if the deallocation failed.

Member Function Documentation

virtual void add (const char **)
Adds a source file path to the current list.

void begin ()
Places the internal iterator at the beginning of the list (before the first item of the list).

const char **next ()
Increments the internal iterator and returns it. If the returned value is NULL then the end of the list has been
reached. The combined use of begin() and next() enables the traversal of the list. The end is reached as soon as
next() returns a NULL value.

int64_t size ()
Gets the number of locators in the list.

10.5 crypted_locator_element Class Reference

#include <mxf_tk.hpp>

This class lets you specify the location of the source file to be wrapped and crypted in an MXF file. It also provides
interfaces to set encryption keys. Note that when you want to wrap in a single track a series af image you should call the
function add() only once with the appropriate syntax (please refer to I_concrete_material documentation)

Public Member Functions

const char *get_location () const
uint64_t get_plaintext_offset () const
uint8_t *get_cryptographic_key_id () const
uint8_t *get_cipher_key () const

Constructor and Destructor Documentation

bool NewCryptedLocatorElementInterface (crypted_locator_element **, const char *, const
uint64_t, const uint8_t *, const uint8_t *)

Retrieves an interface on a crypted locator element. The first parameter is the complete path toward the file to be
wrapped. The second parameter is the plaintext offset. Finally the two last parameters are respectively the public
cryptographic key and the private cipher key to be used for the encryption of this source file.

bool FreeCryptedLocatorInterface(crypted_locators**)
Frees a crypted_locator_element. Returns false if the deallocation failed.

Member Function Documentation

const char *get_location () const
Return the path towards the file to be wrapped.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

97

uint64_t get_plaintext_offset () const
Return the plain text offset. The frames wrapped within an MXF file are not necessarily entirely crypted. The
beginning of the frame might remain not crypted and the end crypted. The plaintext offset (measured in bytes)
corresponds to the start of the crypted data within a frame.

 uint8_t *get_cryptographic_key_id () const
Return the public cryptographic key.

uint8_t *get_cipher_key () const
Return the private cipher key.

10.6 crypted_locators Class Reference

#include <mxf_tk.hpp>

This class lets you build a list of source files (that will be crypted in the MXF file) used upon creation of a new
I_concrete_material.

Public Member Functions

void add (const char **)

Constructor and Destructor Documentation

bool GetEmptyCryptedLocatorInterface(crypted_locators**)
Retrieves an empty list of crypted locators. Locators of crypted elements can be added to this list using the function
add(). Return false if the allocation failed.

bool FreeCryptedLocatorInterface(crypted_locators**)
Frees a crypted_locators list. Returns false if the deallocation failed.

Member Function Documentation

virtual void add (crypted_locator_element**)
Adds a crypted locator element to the current list.

10.7 metadata_list Class Reference

#include <mxf_tk.hpp>

This class describes a list of I_metadata.

Public Member Functions

void begin ()
I_metadata **next ()
int64_t size ()

Member Functions Documentation

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

98

void begin ()
Places the internal iterator at the beginning of the list (before the first item of the list).

const char **next ()

Increments the internal iterator and returns it. If the returned value is NULL then the end of the list has been
reached. The combined use of begin() and next() enables the traversal of the list. The end is reached as soon as
next() returns a NULL value.

int64_t size ()
Gets the number of I_metadata in the list.

10.8 ordered_timecode_list Class Reference

#include <mxf_tk.hpp>

This class handles an ordered list of I_timecode_component. It is usually retrieved from the method
get_timecode_list() from I_timecode_material and describes a timecode track.

Public Member Functions

void begin ()
I_timecode_component **next ()
int64_t size ()

Member Functions Documentation

void begin ()
Places the internal iterator at the beginning of the list (before the first item of the list).

const char **next ()
Increments the internal iterator and returns it. If the returned value is NULL then the end of the list has been
reached. The combined use of begin() and next() enables the traversal of the list. The end is reached as soon as
next() returns a NULL value.

int64_t size ()
Gets the number of I_timecode_component in the list.

10.9 ordered_track_item_list Class Reference

#include <mxf_tk.hpp>

This class handles an ordered list of I_track_item. It is usually retrieved from the method elements() from I_track

and describes the content of a track. Each I_track_item of the list cab be dynamically cast into one of its possible
derivations: I_source_clip, I_dm_source_clip or I_dm_segment.

Public Member Functions

void begin ()
I_track_item **next ()
int64_t size ()

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

99

Member Functions Documentation

void begin ()
Places the internal iterator at the beginning of the list (before the first item of the list).

const char **next ()
Increments the internal iterator and returns it. If the returned value is NULL then the end of the list has been
reached. The combined use of begin() and next() enables the traversal of the list. The end is reached as soon as
next() returns a NULL value.

int64_t size ()
Gets the number of I_track_item in the list.

10.10 properties_list Class Reference

#include <mxf_tk.hpp>

This class describes a list of I_property usually defining the content of an I_metadata.

Public Member Functions

void begin ()
I_property **next ()
int64_t size ()

Member Functions Documentation

void begin ()
Places the internal iterator at the beginning of the list (before the first item of the list).

const char **next ()
Increments the internal iterator and returns it. If the returned value is NULL then the end of the list has been
reached. The combined use of begin() and next() enables the traversal of the list. The end is reached as soon as
next() returns a NULL value.

int64_t size ()
Gets the number of I_property in the list.

10.11 rational Class Reference

#include <mxf_tk.hpp>

This class defines a rational number to specify edit rates.

Public Member Functions

uint32_t get_den ()
double get_double ()
uint32_t get_num ()

Constructor and Destructor Documentation

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

100

bool NewRationalInterface(rational**, uint32_t, uint32_t)
Retrieves a pointer on a rational interface. The first integer sets the numerator while the second sets the
denominator. Returns false if the allocation failed.

bool FreeRationalInterface(rational**)
Frees a rational interface. Returns false if the deallocation failed.

Member Functions Documentation

uint32_t get_den ()
Gets the denominator.

double get_double ()
Gets the closest double value from this rational.

uint32_t get_num ()
Gets the numerator.

10.12 track_list Class Reference

#include <mxf_tk.hpp>

This class handles a list of I_track usually returned by the functions source_tracks() or metadata_tracks() from
I_generic_material. The list returned by source_tracks() within an I_concrete_material is actually a list of
I_concrete_track. In this case, the I_track from the track_list should be statically cast into I_concrete_track.
Contrary to other list interfaces, this one lets you add and suppress items in order to build up the second parameter of
add_metadata() from I_track.

Public Member Functions

void add (I_track **)
void begin ()
I_track **next ()
void remove (I_track **)
int64_t size ()

Constructor and Destructor Documentation

bool GetEmptyTrackListInterface(track_list**)
Retrieves a pointer on an empty track_list. Returns false if the allocation failed.

bool FreeTrackListInterface(track_list**)
Frees a track_list. It will destroy the list not its items. Returns false if the deallocation failed.

Member Functions Documentation

void add (I_track **)
Adds a new track to the current list. The internal iterator is reset to the beginning of the list.

void begin ()
Places the internal iterator at the beginning of the list (before the first item of the list).

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

101

const char **next ()
Increments the internal iterator and returns it. If the returned value is NULL then the end of the list has been
reached. The combined use of begin() and next() enables the traversal of the list. The end is reached as soon as
next() returns a NULL value.

void remove (I_track **)
Removes a track from the current list. The internal iterator is reset to the beginning of the list.

int64_t size ()

Gets the number of I_track in the list.

10.13 mxf_file_list Class Reference

#include <mxf_tk.hpp>

This class handles a list of I_mxf_file used with the function synchronize() from the I_opatom_assembler.

Public Member Functions

void add (I_mxf_file **)
void begin ()
I_mxf_file **next ()
void remove (I_mxf_file **)
int64_t size ()

Constructor and Destructor Documentation

bool GetEmptyMxfFileListInterface (mxf_file_list **)
Retrieves a pointer on an empty mxf_file_list. Returns false if the allocation failed.

bool FreeMxfFileListInterface (mxf_file_list **)
Frees an mxf_file_list. It will destroy the list, not its items. Returns false if the deallocation failed.

Member Functions Documentation

void add (I_mxf_file **)
Adds a new file to the current list. The internal iterator is reset to the beginning of the list.

void begin ()
Places the internal iterator at the beginning of the list (before the first item of the list).

const char **next ()
Increments the internal iterator and returns it. If the returned value is NULL then the end of the list has been
reached. The combined use of begin() and next() enables the traversal of the list. The end is reached as soon as
next() returns a NULL value.

void remove (I_mxf_file **)
Removes a file from the current list. The internal iterator is reset to the beginning of the list.

int64_t size ()
Gets the number of I_mxf_file in the list.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

102

11. DCP Creator

DCPCreator is a separate library used to create the XML files which - associated with the right MXF files - form a
Digital Cinema Package (DCP).

11.1 Composition Playlist

The following classes are defined in the namespace opencube::DCP_CREATOR_NAMESPACE::CPL

11.1.1 I_Marker Class Reference

#include <I_compositionplaylist.hpp>

This class represents a marker as defined in the chapter 8.3.1 of the SMTE429-7 standard

Public Member Functions

bool setLabel(const char *, const char * = 0)
bool setAnnotationText(const char *, const char * = 0)
bool setOffset(int64_t)

Constructor and Destructor Documentation

bool NewMarkerInterface(I_Marker **)
Retrieves a pointer on an I_Marker interface. Returns false if allocation failed.

bool FreeMarkerInterface(I_Marker **)
Frees an I_Marker interface. Returns true if successful.

Member Functions Documentation

bool setLabel(const char *, const char * = 0)
Defines the label of the marker. Refer to the table 4 for further information.

bool setAnnotationText(const char *, const char * = 0)

Free-form, human-readable description (optional).

bool setOffset(int64_t)

Absolute position of the marker from the start of the marker asset.

11.1.2 I_MarkerAsset Class Reference

#include <I_compositionplaylist.hpp>

This class represents a marker asset as defined in the chapter 8.3.2 of the SMTE429-7 standard

Public Member Functions

bool setId(const char *)

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

103

bool setAnnotationText(const char *, const char * = 0)
bool setEditRate(int32_t, int32_t)
bool setIntrinsicDuration(int64_t)
bool setEntryPoint(int64_t)
bool setDuration(int64_t)

Constructor and Destructor Documentation

bool NewMarkerAssetInterface(I_MarkerAsset **)
Retrieves a pointer on an I_MarkerAsset interface. Returns false if allocation failed.

bool FreeMarkerAssetInterface(I_MarkerAsset **)
Frees an I_MarkerAsset interface. Returns true if successful.

Member Functions Documentation

bool setId(const char *)
UUID of the marker

bool setAnnotationText(const char *, const char * = 0)

Free-form, human-readable description(optional).

bool setEditRate(int32_t, int32_t)

Defines the edit rate of the asset.

bool setIntrinsicDuration(int64_t)

Defines the native duration of the asset.

bool setEntryPoint(int64_t)

Identifies the edit unit where the playback should start.

bool setDuration(int64_t)

Defines the duration of the playable region of the asset.

11.1.3 I_ PictureTrackFileAsset class reference

#include <I_compositionplaylist.hpp>

This class represents a picture track file asset as defined in the chapter 8.4 of the SMTE429-7 standard

Public Member Functions

bool setFilename(const char *)
bool getFilename(char **, uint32_t *) const
bool freeFilename(char **) const
bool setId(const char *)
bool setAnnotationText(const char *, const char * = 0)
bool setEditRate(int32_t, int32_t)
bool setIntrinsicDuration(int64_t)
bool setEntryPoint(int64_t)
bool setDuration(int64_t)
bool setKeyId(const char *)

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

104

bool setHash(const char *)
bool setFrameRate(int32_t, int32_t)
bool setScreenAspectRatio(int32_t, int32_t)

Constructor and Destructor Documentation

bool NewPictureTrackFileAssetInterface(I_PictureTrackFileAsset **)
Retrieves a pointer on an I_PictureTrackFileAsset interface. Returns false if allocation failed.

bool FreePictureTrackFileAssetInterface(I_PictureTrackFileAsset **)
Frees an I_PictureTrackFileAsset interface. Returns true if successful.

Member Functions Documentation

bool setFilename(const char *)
Sets the Asset filename.

bool getFilename(char **, uint32_t *) const
Gets the Asset filename and its length. Must be deleted by the API user.

bool freeFilename(char **) const
Frees the Asset filename.

bool setId(const char *)

UUID of the asset (16 last bytes of the UMID of the source package).

bool setAnnotationText(const char *, const char * = 0)

Free-form, human-readable description (optional).

bool setEditRate(int32_t, int32_t)

Defines the edit rate of the asset.

bool setIntrinsicDuration(int64_t)

Defines the native duration of the asset.

bool setEntryPoint(int64_t)

Identifies the edit unit where playback should start (optional).

bool setDuration(int64_t)

Defines the duration of the playable region of the asset (duration).

bool setKeyId(const char *)
Cryptographic key used to encrypt the track file (optional).

bool setHash(const char *)

Contains the message digest of the track file computed using the SHA-1 algorithm (optional).

bool setFrameRate(int32_t, int32_t)

Frame rate of the track file (optional).

bool setScreenAspectRatio(int32_t, int32_t)

Aspect ratio of the track file (optional).

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

105

11.1.4 I_ SoundTrackFileAsset class reference

#include <I_compositionplaylist.hpp>

This class represents a sound track file asset as defined in the chapter 8.5 of the SMTE429-7 standard

Public Member Functions

bool setFilename(const char *)
bool getFilename(char **, uint32_t *) const
bool freeFilename(char **) const
bool setId(const char *)
bool setAnnotationText(const char *, const char * = 0)
bool setEditRate(int32_t, int32_t)
bool setIntrinsicDuration(int64_t)
bool setEntryPoint(int64_t)
bool setDuration(int64_t)
bool setKeyId(const char *)
bool setHash(const char *)
bool setLanguage(const char *)

Constructor and Destructor Documentation

bool NewSoundTrackFileAssetInterface(I_SoundTrackFileAsset **)
Retrieves a pointer on an I_SoundTrackFileAsset interface. Returns false if allocation failed.

bool NewSoundTrackFileAssetInterface(I_SoundTrackFileAsset **)
Frees an I_SoundTrackFileAsset interface. Returns true if successful.

Member Functions Documentation

bool setFilename(const char *)
Sets the Asset filename.

bool getFilename(char **, uint32_t *) const
Gets the Asset filename and its length. Must be deleted by the API user.

bool freeFilename(char **) const
Frees the Asset filename.

bool setId(const char *)

UUID of the asset (16 last bytes of the UMID of the source package).

bool setAnnotationText(const char *, const char * = 0)

Free-form, human-readable description (optional).

bool setEditRate(int32_t, int32_t)

Defines the edit rate of the asset.

bool setIntrinsicDuration(int64_t)

Defines the native duration of the asset.

bool setEntryPoint(int64_t)

Identifies the edit unit where playback should start (optional).

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

106

bool setDuration(int64_t)
Defines the duration of the playable region of the asset (duration).

bool setKeyId(const char *)

Cryptographic key used to encrypt the track file (optional).

bool setHash(const char *)
Contains the message digest of the track file computed using the SHA-1 algorithm (optional).

bool setLanguage(const char *)
Reflects the primary spoken language.

11.1.5 I_ SubtitleTrackFileAsset class reference

#include <I_compositionplaylist.hpp>

This class represents a subtitle track file asset as defined in the chapter 8.6 of the SMTE429-7 standard

Public Member Functions

bool setFilename(const char *)
bool getFilename(char **, uint32_t *) const
bool freeFilename(char **) const
bool setId(const char *)
bool setAnnotationText(const char *, const char * = 0)
bool setEditRate(int32_t, int32_t)
bool setIntrinsicDuration(int64_t)
bool setEntryPoint(int64_t)
bool setDuration(int64_t)
bool setKeyId(const char *)
bool setHash(const char *)
bool setLanguage(const char *)

Constructor and Destructor Documentation

bool NewSubtitleTrackFileAssetInterface(I_SubtitleTrackFileAsset **)
Retrieves a pointer on an I_SubtitleTrackFileAsset interface. Return false if allocation failed.

bool FreeSubtitleTrackFileAssetInterface(I_SubtitleTrackFileAsset **)

Frees an I_SubtitleTrackFileAsset interface. Return true if successful.

Member Functions Documentation

bool setFilename(const char *)
Sets the Asset filename.

bool getFilename(char **, uint32_t *) const
Gets the Asset filename and its length. Must be deleted by the API user.

bool freeFilename(char **) const
Frees the Asset filename.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

107

bool setId(const char *)
UUID of the asset (16 last bytes of the UMID of the source package).

bool setAnnotationText(const char *, const char * = 0)

Free-form, human-readable description (optional).

bool setEditRate(int32_t, int32_t)

Defines the edit rate of the asset.

bool setIntrinsicDuration(int64_t)

Defines the native duration of the asset.

bool setEntryPoint(int64_t)

Identifies the edit unit where playback should start (optional).

bool setDuration(int64_t)

Defines the duration of the playable region of the asset (duration).

bool setKeyId(const char *)

Cryptographic key used to encrypt the track file (optional).

bool setHash(const char *)

Contains the message digest of the track file computed using the SHA-1 algorithm (optional).

bool setLanguage(const char *)
Reflects the primary text language used by the subtitle essence.

11.1.6 I_Reel Class Reference

#include <I_compositionplaylist.hpp>

This class represents a reel as defined in the chapter 7 of the SMTE429-7 standard

Public Member Functions

bool setId(const char *)
bool setAnnotationText(const char *, const char * = 0)
void setMainMarkers(I_MarkerAsset *)
void setMainPicture(I_PictureTrackFileAsset *)
void setMainSound(I_SoundTrackFileAsset *)
void setMainSubtitle(I_SubtitleTrackFileAsset *)

Constructor and Destructor Documentation

bool NewReelInterface(I_Reel **)
Retrieves a pointer on an I_Reel interface. Return false if allocation failed.

bool FreeReelInterface(I_Reel **)

Frees an I_Reel interface. Return true if successful.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

108

Member Functions Documentation

bool setId(const char *)
UUID of the composition reel

bool setAnnotationText(const char *, const char * = 0)
Free-form, human-readable description of the reel (optional).

void setMainMarkers(I_MarkerAsset *)
 Defines the markers associated to the theatrical presentation, i.e. MainPicture and MainSound assets (optional).

void setMainPicture(I_PictureTrackFileAsset *)

Defines the picture essence to be projected onto the main screen (optional).

void setMainSound(I_SoundTrackFileAsset *)
Defines the sound essence to be reproduced in the auditorium (optional).

void setMainSubtitle(I_SubtitleTrackFileAsset *)
Defines the subtitle essence to be reproduced on the main screen in the auditorium (optional).

11.1.7 I_ CompositionPlayList Class Reference

#include <I_compositionplaylist.hpp>

This class represents a composition playlist as defined in the chapter 6 of the SMTE429-7 standard

Public Member Functions

bool setFilename(const char *)
bool getFilename(char **, uint32_t *) const
bool freeFilename(char **) const
bool setId(const char *)
bool setAnnotationText(const char *, const char * = 0)
bool setIconId(const char *)
bool setIssueDate(const char *)
bool setIssuer(const char *, const char * = 0)
bool setCreator(const char *, const char * = 0)
bool setContentTitleText(const char *, const char * = 0)
bool setContentKind(const char *, const char * = 0)
bool setContentVersion(const char *, const char *, const char * = 0)
bool addRating(const char * agency, const char * label)
bool addReel(I_Reel *)
void read(const char *)
void write(const char *)

Constructor and Destructor Documentation

bool NewCompositionPlayListInterface(I_CompositionPlayList **)
Retrieves a pointer on an I_CompositionPlayList interface. Returns false if allocation failed.

bool FreeCompositionPlayListInterface(I_CompositionPlayList **)
Frees an I_CompositionPlayList interface. Returns true if successful.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

109

Member Functions Documentation

bool setFilename(const char *)
Sets the composition playlist filename.

bool getFilename(char **, uint32_t *) const
Gets the composition playlist filename and its length. Must be deleted by the API user.

bool freeFilename(char **) const
Frees the composition playlist filename.

bool setId(const char *)

UUID of the composition playlist.

bool setAnnotationText(const char *, const char * = 0)

Free-form, human-readable description (optional).

bool setIconId(const char *)

Identifies an external image resource containing a picture icon illustrating the composition playlist (optional).

bool setIssueDate(const char *)
Date and Time at which the composition playlist was issued.

bool setIssuer(const char *, const char * = 0)
Free-form, human-readable description of the person or company who has created the composition playlist
(optional).

bool setCreator(const char *, const char * = 0)
Free-form, human-readable description of the system that was used to create composition playlist (optional).

bool setContentTitleText(const char *, const char * = 0)
Human-readable title for the composition playlist.

bool setContentKind(const char *, const char * = 0)
Defines the kind of material referred by the composition playlist.

bool setContentVersion(const char *, const char *, const char * = 0)
Defines the version of material referred by the composition playlist.

bool addRating(const char * agency, const char * label)
Agency represents the agency issuing the rating. Label represents the rating itself.

bool addReel(I_Reel *)
See I_Reel above. Adds a new Reel to the composition playlist.

void read(const char *)
Builds an I_CompositionPlayList instance from an XML file.

void write(const char *)

Writes the instance in an XML file.

11.2 Packing List

The following classes are defined in the namespace opencube::DCP_CREATOR_NAMESPACE::PKL

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

110

11.2.1 I_Asset Class Reference

#include <I_packinglist.hpp>

This class represents an asset as defined in the chapter 5 of the SMTE429-8 standard

Public Member Functions

bool setId(const char * value)
bool setAnnotationText(const char * value, const char * attr = 0)
bool setHash(const char * value)
bool setSize(uint64_t value)
bool setType(const char * value)
bool setOriginalFileName(const char * value, const char * attr = 0)

Constructor and Destructor Documentation

bool NewPKLAssetInterface(I_Asset **)
Retrieves a pointer on an I_Asset interface. Returns false if allocation failed.

bool FreePKLAssetInterface(I_Asset **)
Frees an I_Asset interface. Returns true if successful.

Member Functions Documentation

bool setId(const char * value)
UUID of the asset.

bool setAnnotationText(const char * value, const char * attr = 0)
Free-form, human-readable description of the asset (optional).

bool setHash(const char * value)
Base64 representation of the SHA-1 message digest of the asset.

bool setSize(uint64_t value)
Length in bytes of the asset.

bool setType(const char * value)
MIME type of the asset

bool setOriginalFileName(const char * value, const char * attr = 0)
File name of the asset at the moment when asset was created.

11.2.2 I_PackingList Class Reference

#include <I_packinglist.hpp>

This class represents a packing list as defined in the chapter 4 of the SMTE429-8 standard

Public Member Functions

bool setId(const char * value)
bool setAnnotationText(const char * value, const char * attr = 0)

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

111

bool setIconId(const char * value)
bool setIssueDate(const char * value)
bool setIssuer(const char * value, const char * attr = 0)
bool setCreator(const char * value, const char * attr = 0)
bool setGroupId(const char * value)
bool addAsset(I_Asset *)
void read(const char *)
void write(const char *)

Constructor and Destructor Documentation

bool NewPackingListInterface(I_PackingList **)
Retrieves a pointer on an I_PackingList interface. Returns false if allocation failed.

bool FreePackingListInterface(I_PackingList **)
Frees an I_PackingList interface. Returns true if successful.

Member Functions Documentation

bool setId(const char * value)
UUID of the packing list.

bool setAnnotationText(const char * value, const char * attr = 0)
Free-form, human-readable description of the packing list (optional).

bool setIconId(const char * value)

Identifies an external image ressource containing a picture icon illustrating the packing list (optional).

bool setIssueDate(const char * value)
Date and Time at which the packing list was issued.

bool setIssuer(const char * value, const char * attr = 0)
Free-form, human-readable description of person or company who has created the packing list.

bool setCreator(const char * value, const char * attr = 0)
Free-form, human-readable description of the system that was used to create packing list.

bool setGroupId(const char * value)
Used to group together different packing list (optional).

bool addAsset(I_Asset *)
See I_Asset above. Adds an I_Asset to the packing list.

void read(const char *)
Builds an I_PackingList instance from an XML file.

void write(const char *)
Writes the instance in an XML file.

11.3 Asset Map and Volume Index

The following classes are defined in the namespace opencube::DCP_CREATOR_NAMESPACE::AM

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

112

11.3.1 I_Chunk Class Reference

#include <I_assetmap.hpp>

This class represents a chunk as defined in the chapter 6 of the SMTE429-9 standard

Public Member Functions

bool setPath(const char * value)
bool setVolumeIndex(uint32_t value)
bool setOffset(uint32_t value)
bool setLength(uint32_t value)

Constructor and Destructor Documentation

bool NewChunkInterface(I_Chunk **)
Retrieves a pointer on an I_Chunk interface. Returns false if allocation failed.

bool FreeChunkInterface(I_Chunk **)
Frees an I_Chunk interface. Returns true if successful.

Member Functions Documentation

bool setPath(const char * value)
Indicates the complete path for the chunk.

bool setVolumeIndex(uint32_t value)
Indicates the index of the volume containing the chunk (optional).

bool setOffset(uint32_t value)
Indicates the offset from the start of the asset to the first byte of the asset segment referenced by this chunk
(optional).

bool setLength(uint32_t value)
Identifies the length in bytes of the chunk (optional).

11.3.2 I_Asset Class Reference

#include <I_assetmap.hpp>

This class represents an asset as defined in the chapter 5 of the SMTE429-9 standard

Public Member Functions

bool setId(const char * value)
bool setAnnotationText(const char * value, const char * attr = 0)
bool setPackingList(int value)
bool addChunk(I_Chunk *)

Constructor and Destructor Documentation

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

113

bool NewAMAssetInterface(I_Asset **)
Retrieves a pointer on an I_Asset interface. Returns false if allocation failed.

bool FreeAMAssetInterface(I_Asset **)
Frees an I_Asset interface. Returns true if successful.

Member Functions Documentation

bool setId(const char * value)
UUID of the asset.

bool setAnnotationText(const char * value, const char * attr = 0)
Free-form, human-readable description of the asset (optional).

bool setPackingList(int value)
Indicates if the asset is a packing list (optional).

bool addChunk(I_Chunk *)
See I_Chunk above. Adds an I_Chunk to the asset (optional).

11.3.3 I_AssetMap Class Reference

#include <I_assetmap.hpp>

This class represents an asset map as defined in the chapter 4 of the SMTE429-9 standard

Public Member Functions

bool setId(const char * value)
bool setAnnotationText(const char * value, const char * attr = 0)
bool setCreator(const char * value, const char * attr = 0) = 0;
bool setVolumeCount(uint32_t value)
bool setIssueDate(const char * value)
bool setIssuer(const char * value, const char * attr = 0)
bool addAsset(I_Asset *)
void read(const char *)
void write(const char *)

Constructor and Destructor Documentation

bool NewAssetMapInterface(I_AssetMap **)
Retrieves a pointer on an I_AssetMap interface. Returns false if allocation failed.

bool FreeAssetMapInterface(I_AssetMap **)
Frees an I_AssetMap interface. Returns true if successful.

Member Functions Documentation

bool setId(const char * value)
UUID of the AssetMap.

bool setAnnotationText(const char * value, const char * attr = 0)
Free-form, human-readable description of the asset map (optional).

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

114

bool setCreator(const char * value, const char * attr = 0) = 0;

Free-form, human-readable description of the system that was used to create asset map.

bool setVolumeCount(uint32_t value)
Total number of volumes referenced by this asset map.

bool setIssueDate(const char * value)
Date and Time at which the asset map was issued.

bool setIssuer(const char * value, const char * attr = 0)
Free-form, human-readable description of person or company who has created the asset map.

bool addAsset(I_Asset *)
See I_Asset above. Adds an I_Asset to the asset map.

void read(const char *)
Builds an I_AssetMap instance from an XML file.

void write(const char *)
Writes the instance in an XML file.

11.3.4 I_VolumeIndex Class Reference

#include <I_assetmap.hpp>

This class represents a volume index as defined in the chapter 7 of the SMTE429-9 standard

Constructor and Destructor Documentation

bool NewVolumeIndexInterface(I_VolumeIndex **)
Retrieves a pointer on an I_VolumeIndex interface. Returns false if allocation failed.

bool FreeVolumeIndexInterface(I_VolumeIndex **)
Frees an I_VolumeIndex interface. Returns true if successful.

Member Functions Documentation

bool setIndex(uint32_t value)
Index of the volume.

void read(const char *) = 0;

Builds an I_VolumeIndex instance from an XML file.

void write(const char *) = 0;
Writes the instance in an XML file.

11.4 DCPCreator

The following class is defined in the namespace opencube::DCP_CREATOR_NAMESPACE

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

115

11.4.1 Options and creation

void UseXmlNamespace(bool);

Creates XML files with their normative namespace (default is true)

bool CreateCompositionPlayList(CPL::I_CompositionPlayList *,
 const char * filename,
 const char * contentVersionId,
 const char * contentVersionLabel,
 const char * contentTitle = 0,
 I_DCPCreator::CPLContentKind contentKind = I_DCPCreator::CKFeature,
 const char * annotation = 0,
 const char * iconId = 0);

Refer to I_CompositionPlayList in I_compositionplaylist.hpp. Builds an instance with all the required fields filled.

bool CreateReel (CPL::I_Reel *, const char * annotation = 0)
Refer to I_Reel in I_compositionplaylist.hpp. Builds an instance with all the required fields filled.

bool CreateMarker(CPL::I_Marker *,
 I_DCPCreator::CPLStandardMarkerLabel label,
 int64_t offset,
const char * annotation = 0)

Refer to I_Marker in I_compositionplaylist.hpp. Builds an instance with all the required fields filled.

bool CreateMarkerAsset(CPL::I_MarkerAsset *,
 int32_t editRateNum, int32_t editRateDen,
 int64_t intrinsicDuration,
 const char * annotation = 0,
 int64_t entryPoint = 0x7fffffffffffffffULL,
 int64_t duration = 0x7fffffffffffffffULL)

Refer to I_MarkerAsset in I_compositionplaylist.hpp. Builds an instance with all the required fields filled.

bool CreatePictureTrackFileAsset (CPL::I_PictureTrackFileAsset *,
 const char * filename,
 const char * instanceID,
 int32_t editRateNum,
 int32_t editRateDen,
 int64_t intrinsicDuration,
 int32_t frameRateNum,
 int32_t frameRateDen,
 int32_t screenARNum,
 int32_t screenARDen,
 const char * annotation = 0,
 int64_t entryPoint = 0x7fffffffffffffffULL,
 int64_t duration = 0x7fffffffffffffffULL,
 const char * keyId = 0,
 const char * hsh = 0)

Refer to I_PictureTrackFileAsset in I_compositionplaylist.hpp. Builds an instance with all the required fields
filled.

bool CreateSoundTrackFileAsset(CPL::I_SoundTrackFileAsset *,
 const char * filename,
 const char * instanceID,
 int32_t editRateNum,
 int32_t editRateDen,
 int64_t intrinsicDuration,

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

116

 const char * annotation = 0,
 int64_t entryPoint = 0x7fffffffffffffffULL,
 int64_t duration = 0x7fffffffffffffffULL,
 const char * keyId = 0,
 const char * hsh = 0,
 const char * lang = 0)

Refer to I_SoundTrackFileAsset in I_compositionplaylist.hpp. Builds an instance with all the required fields filled.

bool CreateSubtitleTrackFileAsset(CPL::I_SubtitleTrackFileAsset *,
 const char * filename,
 const char * instanceID,
 int32_t editRateNum,
 int32_t editRateDen,
 int64_t intrinsicDuration,
 const char * annotation = 0,
 int64_t entryPoint = 0x7fffffffffffffffULL,
 int64_t duration = 0x7fffffffffffffffULL,
 const char * keyId = 0,
 const char * hsh = 0,
 const char * lang = 0)

Refer to I_SubtitleTrackFileAsset in I_compositionplaylist.hpp. Builds an instance with all the required fields
filled.

11.4.2 I_DCPCreator class reference

#include <I_packinglist.hpp>

Simplified interface to build a DCP

Public Member Functions

Constructor and Destructor Documentation

bool NewDCPCreatorInterface(I_DCPCreator **)
Retrieves a pointer on an I_DCPCreator interface. Returns false if allocation failed.

bool FreeDCPCreatorInterface(I_DCPCreator **)
Frees an I_DCPCreator interface. Returns true if successful.

Member Functions Documentation

bool setRootDirectory(const char *)
Sets the path where package is built

int addCompositionPlayList(CPL::I_CompositionPlayList *)
Adds a new composition to the DCP filename of the written CPL XML file required and uncomputable
ContentVersion element.
- If not set, required Content Title is set to "Composition Playlist #N" by default.
- If not set, required Content Kind is set to "feature".

bool setPackingList(const char *)
Sets the relative(-to-root-path) path of the generated Packing List.
- If not set only CPL is generated

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

117

void addXmlExtToASSETMAPandVOLINDEX(bool)

AssetMap and Volume Index files should be named ASSETMAP.xml and VOLINDEX.xml but some
manufacturers provide DCP files without extension, so you can choose here how to generate them.

void addUUIDToFilenames(bool)
Adds UUID of CPL and PKL to their filename.

bool flush()

Writes DCP.

Related Documentation

enum CPLContentKind

Enumeration members:

CKFeature

CKTrailer

CKTest

CKTeaser

CKRating

CKAdvertisement

CKShort

CKTransitional

CKPsa

CKPolicy

This enumeration defines all Content Kind allowed values.

enum CPLStandardMarkerLabel

Enumeration members:

SMLffoc

SMLlfoc

SMLfftc

SMLlftc

SMLffoi

SMLlfoi

SMLffec

SMLlfec

SMLffob

SMLlfob

SMLffmc

SMLlfmc

This enumeration defines all the allowed Standard Marker Label values.

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

118

MXFTk

Classes
class concrete_list
class crypted_locator_element
class crypted_locators

class error_list

class generic_list

class I_concrete_material
class I_concrete_track
class I_crypted_essence_stream_task
class I_dcp1_file
class I_dm_segment
class I_dm_source_clip
class I_essence_stream_task
class I_essence_type
class I_evtr_file
class I_generic_material
class I_input_metadata_stream_task
class I_input_mxf_stream_task
class I_input_partial_mxf_stream_task
class I_metadata
class I_metadata_material
class I_mxf_aes3_audio_essence_descriptor
class I_mxf_cdci_picture_essence_descriptor
class I_mxf_error
class I_mxf_error_handler
class I_mxf_generic_data_essence_descriptor
class I_mxf_generic_picture_essence_descriptor
class I_mxf_generic_sound_essence_descriptor
class I_mxf_file
class I_mxf_file_descriptor
class I_mxf_jpeg2000_picture_subdescriptor
class I_mxf_mpeg2_video_descriptor
class I_mxf_rgba_picture_essence_descriptor
class I_mxf_subdescriptor
class I_mxf_wave_audio_essence_descriptor
class I_op1a_file
class I_op1b_file
class I_op1c_file
class I_op2a_file
class I_op2b_file
class I_op2c_file
class I_op3a_file
class I_op3b_file
class I_op3c_file
class I_opatom_assembler
class I_opatom_file
class I_output_mxf_stream_task

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

119

class I_property
class I_source_clip
class I_timecode
class I_timecode_component
class I_timecode_material
class I_track
class I_track_item
class I_umid
class I_umid64
class I_value
class I_xdcam_dv_file
class I_xdcam_hd_file
class I_xdcam_imx_file
class I_xdcam_proxy_file

class locators

class metadata_list
class mxf_file_list

class ordered_timecode_list
class ordered_track_item_list

class properties_list

class rational

class track_list

Typedefs
typedef const char * label_c

Functions
bool BuildP2XML (const char*)
bool BuildP2XMLBuffer (I_mxf_file*, const char*, size_t*, unsigned char*)

bool CancelNewP2Shot ()
bool CopyTimecodeInterface (I_timecode **, const I_timecode *)

void ExtractAesToWave (bool)
void ExtractAes8ToWave (bool)
void ExtractCustomByKLV (bool)

bool FreeConcreteMaterialInterface (I_concrete_material **)
bool FreeCryptedLocatorInterface (crypted_locators **)
bool FreeCryptedLocatorElementInterface (crypted_locator_element **)
bool FreeDcp1FileInterface (I_dcp1_file **)
bool FreeEvtrFileInterface (I_evtr_file **)
bool FreeLocatorInterface (locators **)
bool FreeMetadataInterface (I_metadata **)
bool FreeMetadataMaterialInterface (I_metadata_material **)
bool FreeMxfAes3AudioEssenceDescriptorInterface (I_mxf_aes3_audio_essence_descriptor **)

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

120

bool FreeMxfCDCIPictureEssenceDescriptorInterface (I_mxf_cdci_picture_essence_descriptor **)
bool FreeMxfFileDescriptorInterface (I_mxf_file_descriptor **)
bool FreeMxfFileInterface (I_mxf_file **)
bool FreeMxfFileListInterface (mxf_file_list **)
bool FreeMxfGenericDataEssenceDescriptorInterface

(I_mxf_generic_sound_essence_descriptor**)
bool FreeMxfGenericPictureEssenceDescriptorInterface

(I_mxf_generic_picture_essence_descriptor **)
bool FreeMxfGenericSoundEssenceDescriptorInterface

(I_mxf_generic_sound_essence_descriptor **)
bool FreeMxfJpeg2000PictureSubdescriptorInterface (I_mxf_jpeg2000_picture_subdescriptor **)
bool FreeMxfMpeg2VideoDescriptorInterface (I_mxf_mpeg2_video_descriptor **)
bool FreeMxfRGBAPictureEssenceDescriptorInterface (I_mxf_rgba_picture_essence_descriptor **)
bool FreeMxfWaveAudioEssenceDescriptorInterface (I_mxf_wave_audio_essence_descriptor **)
bool FreeOp1aFileInterface (I_op1a_file **)
bool FreeOp1bFileInterface (I_op1b_file **)
bool FreeOp1cFileInterface (I_op1c_file **)
bool FreeOp2aFileInterface (I_op2a_file **)
bool FreeOp2bFileInterface (I_op2b_file **)
bool FreeOp2cFileInterface (I_op2c_file **)
bool FreeOp3aFileInterface (I_op3a_file **)
bool FreeOp3bFileInterface (I_op3b_file **)
bool FreeOp3cFileInterface (I_op3c_file **)
bool FreeOpAtomAssemblerInterface (I_opatom_assembler **)
bool FreeOpAtomFileInterface (I_opatom_file **)
bool FreePropertyInterface (I_property **)
bool FreeRationalInterface (rational **)
bool FreeTimecodeInterface (I_timecode **)
bool FreeTimecodeMaterialInterface (I_timecode_material **)
bool FreeTrackListInterface (track_list **)
bool FreeUmidInterface (I_umid **)
bool FreeUmid64Interface (I_umid64 **)
bool FreeValueInterface (I_value **)
bool FreeXdcamDvFileInterface (I_xdcam_dv_file **)
bool FreeXdcamHdFileInterface (I_xdcam_dv_file **)
bool FreeXdcamImxFileInterface (I_xdcam_imx_file **)
bool FreeXdcamProxyFileInterface (I_xdcam_proxy_file **)

bool GetEmptyCryptedLocatorInterface (crypted_locators **)
bool GetEmptyLocatorInterface (locators **)
bool GetEmptyMxfFileListInterface (mxf_file_list **)
bool GetEmptyTrackListInterface (track_list **)
bool GetMxfErrorHandlerInterface (I_mxf_error_handler **)

bool InitMXF_TK (void)
bool InitMXF_TK2 (const char*)

bool NewConcreteMaterialInterface (I_concrete_material **, locators *, wrapping, rational*, bool)
bool NewCryptedLocatorElementInterface (crypted_locator_element **, const char *, const

uint64_t, const uint8_t *, const uint8_t *)
bool NewCryptedMaterialInterface (I_concrete_material **, crypted_locators *, rational *, bool)
bool NewDcp1FileInterface (I_dcp1_file **, const char *)
bool NewDcp1StreamInterface (I_dcp1_file **, I_output_mxf_stream_task *)
bool NewEvtrFileInterface (I_evtr_file **, const char *)
bool NewEvtrStreamInterface (I_op1a_file **, I_output_mxf_stream_task *)
bool NewExtConcreteMaterialInterface (I_concrete_material **, const char *, rational*, bool)

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

121

bool NewMetadataInterfaceByLabel (I_metadata **, label_c)
bool NewMetadataInterfaceByXML (I_metadata **, const char *)
bool NewMetadataMaterialInterface (I_metadata_material **, metadata_type, I_metadata *, int64_t,

int64_t, const wchar_t *, size_t)
bool NewMxfAes3AudioEssenceDescriptorInterface (I_mxf_aes3_audio_essence_descriptor **)
bool NewMxfCDCIPictureEssenceDescriptorInterface (I_mxf_cdci_picture_essence_descriptor **)
bool NewMxfFileDescriptorInterface (I_mxf_file_descriptor **)
bool NewMxfFileInterface (I_mxf_file **, const char*, mxf_opening_mode)
bool NewMxfGenericDataEssenceDescriptorInterface

(I_mxf_generic_sound_essence_descriptor**)
bool NewMxfGenericPictureEssenceDescriptorInterface

(I_mxf_generic_picture_essence_descriptor **)
bool NewMxfGenericSoundEssenceDescriptorInterface

(I_mxf_generic_sound_essence_descriptor**)
bool NewMxfJpeg2000PictureSubdescriptorInterface (I_mxf_jpeg2000_picture_subdescriptor **)
bool NewMxfMpeg2VideoDescriptorInterface (I_mxf_mpeg2_video_descriptor **)
bool NewMxfRGBAPictureEssenceDescriptorInterface (I_mxf_rgba_picture_essence_descriptor **)
bool NewMxfStreamInterface (I_mxf_file **, I_input_mxf_stream_task *)
bool NewMxfWaveAudioEssenceDescriptorInterface (I_mxf_wave_audio_essence_descriptor **)
bool NewOp1aFileInterface (I_op1a_file **, const char *)
bool NewOp1aStreamInterface (I_op1a_file **, I_output_mxf_stream_task *)
bool NewOp1bFileInterface (I_op1b_file **, const char *)
bool NewOp1bStreamInterface (I_op1b_file **, I_output_mxf_stream_task *)
bool NewOp1cFileInterface (I_op1c_file **, const char *)
bool NewOp1cStreamInterface (I_op1c_file **, I_output_mxf_stream_task *)
bool NewOp2aFileInterface (I_op2a_file **, const char *)
bool NewOp2aStreamInterface (I_op2a_file **, I_output_mxf_stream_task *)
bool NewOp2bFileInterface (I_op2b_file **, const char *)
bool NewOp2bStreamInterface (I_op2b_file **, I_output_mxf_stream_task *)
bool NewOp2cFileInterface (I_op2c_file **, const char *)
bool NewOp2cStreamInterface (I_op2c_file **, I_output_mxf_stream_task *)
bool NewOp3aFileInterface (I_op3a_file **, const char *)
bool NewOp3aStreamInterface (I_op3a_file **, I_output_mxf_stream_task *)
bool NewOp3bFileInterface (I_op3b_file **, const char *)
bool NewOp3bStreamInterface (I_op3b_file **, I_output_mxf_stream_task *)
bool NewOp3cFileInterface (I_op3c_file **, const char *)
bool NewOp3cStreamInterface (I_op3c_file **, I_output_mxf_stream_task *)
bool NewOpAtomAssemblerInterface (I_opatom_assembler **)
bool NewOpAtomFileInterface (I_opatom_file **, const char *)
bool NewOpAtomStreamInterface (I_opatom_file **, I_output_mxf_stream_task *)
bool NewOpZeroFileInterface (I_op1a_file **, const char *)
bool NewOpZeroStreamInterface (I_op1a_file **, I_output_mxf_stream_task *)
bool NewP2Shot (locators*, const char*, const char*, I_timecode*, I_umid*)
bool NewP2ShotFromStream (I_essence_stream_task*, I_essence_stream_task*,

I_essence_stream_task*, I_essence_stream_task*, I_essence_stream_task*, const char*, const
char*, I_timecode*, I_umid*)

bool NewPropertyInterface (I_property **, label_c, const I_value *)
bool NewRationalInterface (rational **, uint32_t, uint32_t)
bool NewStreamMaterialInterface (I_concrete_material **, I_essence_stream_task *, wrapping, bool)
bool NewTimecodeComponentInterface (I_timecode_component **, I_timecode *, int64_t)
bool NewTimecodeInterface (I_timecode **, const char *, uint16_t, bool)
bool NewTimecodeInterfaceByValue (I_timecode **, uint16_t, uint16_t, uint16_t, uint16_t, uint16_t,

bool)
bool NewTimecodeMaterialInterface (I_timecode_material **, int64_t, rational *)
bool NewUmidInterfaceByArray (I_umid **, const uint8_t *)
bool NewUmidInterfaceByString (I_umid **, const char *)

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

122

bool NewUmid64InterfaceByArray (I_umid64 **, const uint8_t *)
bool NewUmid64InterfaceByString (I_umid64 **, const char *)
bool NewValueInterface (I_value **, value_type, size_t, const uint8_t *)
bool NewXdcamDvFileInterface (I_xdcam_dv_file **, const char *)
bool NewXdcamHdFileInterface (I_xdcam_hd_file **, const char *)
bool NewXdcamImxFileInterface (I_xdcam_imx_file **, const char *)
bool NewXdcamProxyFileInterface (I_xdcam_proxy_file **, const char *)
bool NewXdcamDvStreamInterface (I_xdcam_dv_file **, I_output_mxf_stream_task *)
bool NewXdcamHdStreamInterface (I_xdcam_hd_file **, I_output_mxf_stream_task *)
bool NewXdcamImxStreamInterface (I_xdcam_imx_file **, I_output_mxf_stream_task *)
bool NewXdcamProxyStreamInterface (I_xdcam_proxy_file **, I_output_mxf_stream_task *)

double ProgressNewP2Shot ()

bool SetDictionary (const char *)

bool iso7_to_utf16 (wchar_t *, const char *, int)

I_dm_segment *dm_segment_cast (I_track_item *)
I_dm_source_clip *dm_source_clip_cast (I_track_item *)

I_source_clip *source_clip_cast (I_track_item *)

bool utf16_to_iso7 (char *, const wchar_t *, int)

bool WaitEndNewP2Shot ()
void WrapWaveAsAes (bool)
void WrapWaveAsAes8 (bool)

Enumeration Types

anonymous enum

KAG_SIZE
HEADER_REPETITION
INDEX_TABLE
PREFERRED_PARTITION_DURATION

REVERSE_PLAY

enum electro_spatial_form

formulation_two_channel_default
formulation_two_channel
formulation_single_channel
formulation_primary_secondary
formulation_stereophonic
formulation_single_channel_double_frequency
formulation_stereo_left_channel_double_frequency
formulation_stereo_right_channel_double_frequency
formulation_multi_channel_default
formulation_unknown

enum essence_format

for_unknown
for_525_5994p

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

123

for_525_5994i
for_525_60i
for_625_50i
for_625_50p
for_720_2398p
for_720_24p
for_720_25p
for_720_2997p
for_720_30p
for_720_50p
for_720_5994p
for_720_60p
for_1080_2398p
for_1080_2398sf
for_1080_24p
for_1080_24sf
for_1080_25p
for_1080_25sf
for_1080_2997p
for_1080_2997sf
for_1080_30p
for_1080_30sf
for_1080_50i
for_1080_50p
for_1080_5994p
for_1080_5994i
for_1080_60i
for_1080_60p

enum essence_source

ess_unknown
ess_d10
ess_d11
ess_dv_unknown
ess_dv_iec
ess_dv_cam_iec
ess_dv_smpte
ess_mpeg_es
ess_mpeg_pes
ess_mpeg_ps
ess_mpeg_ts
ess_mpeg4
ess_uncompressed_unknown
ess_uncompressed_sd
ess_uncompressed_hd1080
ess_uncompressed_hd720
ess_jpeg2k
ess_bwf
ess_aes3
ess_a_law
ess_aiff
ess_vc3

enum gravity

MXF_NONE

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

124

MXF_CAUTION
MXF_WARNING
MXF_FATAL

enum opencube::layout

layout_full_frame
layout_separate_fields
layout_single_field
layout_mixed_fields
layout_segmented_frame
layout_unknown

enum metadata_type

m_timeline
m_event
m_static
m_error

enum mxf_opening_mode

Enumeration members:

METADATA_ONLY

CLOSED_METADATA_ONLY

CLOSED_COMPLETE_METADATA

 METADATA_AND_LINEAR_PLAYOUT

 METADATA_AND_RANDOM_ACCESS

enum sample_structure

samp_unknown
samp_4_1_1
samp_4_2_0
samp_4_2_2
samp_4_4_4_4

enum track_type

picture
sound
data
timeline_metadata
event_metadata
static_metadata
track_type_error

enum value_type

MXF_BOOLEAN
MXF_INT8
MXF_INT16
MXF_INT32
MXF_INT64
MXF_UINT8
MXF_UINT16
MXF_UINT32
MXF_UINT64

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

125

MXF_UUID
MXF_UMID32
MXF_UMID64
MXF_RATIONAL
MXF_TIMESTAMP
MXF_ISO7_STRING
MXF_UTF16_STRING
MXF_PRODUCT_VERSION
MXF_STRONG_REF
MXF_WEAK_REF
MXF_ARRAY_BOOLEAN
MXF_ARRAY_INT8
MXF_ARRAY_INT16
MXF_ARRAY_INT32
MXF_ARRAY_INT64
MXF_ARRAY_UINT8
MXF_ARRAY_UINT16
MXF_ARRAY_UINT32
MXF_ARRAY_UINT64
MXF_ARRAY_UUID
MXF_ARRAY_STRONG_REF
MXF_ARRAY_WEAK_REF
MXF_ARRAY_UMID32
MXF_ARRAY_UMID64
MXF_UNKNOWN

enum wrapping

std_wrapping
clip_wrapping
frame_wrapping
line_wrapping
custom_wrapping
evtr_wrapping
xdcam_wrapping
p2_wrapping
k2_wrapping
opzero_wrapping
dcp_wrapping
wrapping_error

Error Messages
// Caution

#1001# <Essence not supported in MxfTk Evaluation version>
#1002# <Cannot proceed: Trying to add/remove metadata to/from a picture, sound or data track>
#1003# <Cannot proceed: Metadata material type does not match metadata track type>
#1004# <Cannot proceed: Going beyond documented tracks scope>
#1005# <Cannot proceed: Going out of timecode boundaries>
#1006# <Cannot proceed: Trying to write data on a closed stream>
#1007# <Cannot proceed: Label not found in dictionary>
#1008# <Cannot proceed: Unexpected type for this label>
#1009# <Cannot proceed: Generic material from each OpAtom file must contain the same number of tracks to be
serializable>
#1010# <Cannot proceed: Cannot serialize video tracks. Each OpAtom files must contain maximum one and only one
video track>

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

126

#1011# <Cannot proceed: Cannot serialize video tracks. Tracks have a different edit rate>
#1012# <Cannot proceed: Cannot serialize audio tracks. Each OpAtom files must contain maximum one and only one
audio track>
#1013# <Cannot proceed: Cannot serialize video tracks. Tracks have a different edit rate>
#1014# <Cannot proceed: Cannot serialize data tracks. Each OpAtom files must contain maximum one and only one
data track>
#1015# <Cannot proceed: Cannot serialize data tracks. Tracks have a different edit rate>
#1016# <Cannot proceed: Don't know how to serialize event metadata tracks>
#1017# <Cannot proceed: Cannot serialize static metadata tracks. Each OpAtom files must contain maximum one and
only one static metadata track>
#1018# <Cannot proceed: Cannot serialize static metadata tracks. Tracks have a different edit rate>
#1019# <Cannot proceed: Cannot serialize timeline metadata tracks. Each OpAtom files must contain maximum one
and only one timeline metadata track>
#1020# <Cannot proceed: Cannot serialize timeline metadata tracks. Tracks have a different edit rate>
#1021# <Cannot proceed: Valid call only while streaming in an MXF file>
#1022# <Cannot proceed: A concrete material is already set. Only one is allowed in an OpAtom file>
#1023# <Cannot proceed: There should be one and only essence track in an OpAtom concrete material>
#1024# <Cannot proceed: A concrete material is already set. Only one is allowed in an Op1a file>
#1025# <Cannot proceed: Operational Pattern not supported by this version of MxfTk>
#1026# <Cannot proceed: Only Op1a files are supported in this MxfTk standard version>
#1027# <Cannot proceed: Clip wrapping is not allowed when streaming out an MXF file>
#1028# <Cannot proceed: Invalid duration>
#1029# <Label not found>
#1030# <Cannot proceed: Cannot add this property to the current metadata>
#1031# <Cannot proceed: Timecode track duration doesn't match essence tracks duration>
#1032# <Cannot proceed: Invalid number of essence streams>
#1033# <Cannot proceed: No essence stream to write to>
#1034# <Cannot proceed: Documented tracks are not member of this material>
#1035# <Cannot proceed: At least one of the files is not an OpAtom file>
#1036# <Cannot proceed: Feature supported only in MxfTk advanced version>
#1037# <Cannot proceed: The file must be opened in editing mode to perform this task>
#1038# <Cannot proceed: More than one generic material (material package) was detected.>
#1039# <Cannot proceed: These OpAtom files don't share the same generic material.>
#1040# <Cannot proceed: Output timecode must be continuous. There should be one and only one timecode
component.>
#1041# <Cannot proceed: Evtr file should be built using a D10 source.>
#1042# <Cannot proceed: Xdcam proxy file should be built using MPEG4 and A-law sources.>
#1043# <Cannot proceed: Xdcam Dv file should be built using DV IEC and AES3 sources.>
#1044# <Cannot proceed: P2 files should be built using 1 DV IEC or SMPTE source and 2 or 4 AES sources.>
#1045# <Cannot proceed: Basename for P2 files should be exactly 6 characters long + NULL termination.>
#1046# <Cannot proceed: Origin of the metadata track does not fall within the essence track's scope.>
#1047# <Cannot proceed: Metadata segment starts before the origin of the event track.>
#1048# <Cannot proceed: PREFERRED_PARTITION_SIZE can be set only in Op1a file. Use
PREFERRED_PARTITION_DURATION instead.>
#1049# <Cannot proceed: You should set the duration of each timecode component when setting a discontinuous
timecode.>
#1050# <Cannot proceed: Metadata material cannot be removed from a timeline metadata track.>
#1051# <Cannot proceed: There is not enough digits to represent the first or last number.>
#1052# <Cannot proceed: Invalid first/last/step argument for uncompressed images.>
#1053# <Cannot proceed: External reference file was not set.>
#1054# <Cannot proceed: You cannot set an external reference with an OpZero file.>
#1055# <Cannot proceed: You cannot set an external reference with a DCP file.>
#1056# <Cannot proceed: Edit rate of DCP concrete material must be 24/1 or 48/1.>
#1057# <Cannot proceed: Invalid task for the selected opening mode.

// Warning

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

127

#2001# <Invalid File Name, check path>
#2002# <Error while opening/creating file or directory>
#2003# <Error while closing file>
#2004# <No file to work with>
#2005# <Error while writing file, check disk space>
#2006# <Seeking beyond file's scope>
#2007# <Unrecognized MXF Key>
#2008# <Unrecognized MXF Type>
#2009# <Unrecognized MXF Descriptor name>
#2010# <Invalid MPEG2 Frame>
#2011# <Invalid MXF Wrapping Option>
#2012# <Invalid Sampling Frequency (MPEG2 Audio ES)>
#2013# <Cannot Multiplex D10 and AES3-8 streams in an MXF file>
#2014# <DV encoding not supported>
#2015# <No data to be processed>
#2016# <Not supported essence or combination of essences>
#2017# <Cannot access essences for reading upon creation of an MXF file>
#2018# <Streaming metadata is not allowed while processing OpAtom files>
#2019# <No Essence Data to be written>
#2020# <D10 Essence requires a KAG Size set to 512>
#2021# <Unknown value_type>
#2022# <Invalid NULL pointer>
#2023# <Invalid MXF file structure: Sequence from a track is missing>
#2024# <Unrecognized track type>
#2025# <Cannot proceed: Incomplete timecode definition>
#2026# <Invalid timecode format detected>
#2027# <Invalid timecode format : illegal drop frame timecode value>
#2028# <No header metadata in the file: cannot decode MXF>
#2029# <Invalid Header metadata: preface not found>
#2030# <Invalid Header metadata: cannot find content storage set>
#2031# <Invalid Header metadata: unrecognized package>
#2032# <Invalid Header Metadata: an essence referenced by the the header metadata cannot be found in the file>
#2033# <Invalid Header Metadata: an essence container is missing a UMID>
#2034# <Invalid Header Metadata: cannot find essence container>
#2035# <No essence container data to update indexsid>
#2036# < Data cannot be linked to header metadata. This MXF file is probably malformed. >
#2037# <Cannot build metadata tree : unrecognized property>
#2038# <Broken link: InstanceUID not found>
#2039# <Cannot build metadata tree : several possible roots detected>
#2040# <Cannot build metadata tree : no root detected>
#2041# <Broken link: cannot reach referenced child>
#2042# <Cannot not build streaming buffer>
#2043# <Invalid BWF file>
#2044# <Cannot fill essence klv: custom klv size is too short>
#2045# <Cannot proceed: Concrete Material should be Xdcam-wrapped.>
#2046# <Cannot proceed: Clip wrapped sources should have the same duration.>
#2047# <Cannot proceed: Invalid AES frame size computed.>
#2048# <Truncated KLV Key>
#2049# <Truncated KLV Length>
#2050# <Truncated KLV Value>
#2051# <Cannot perform a partial restore : header metadata misses duration data.>
#2052# <Cannot proceed: No data to be retrieved for these timecode values.>
#2053# <Cannot proceed: This is not a P2 file or it is not stored in a P2 directory structure.>
#2054# <Cannot proceed: This is not a P2 Video file.>
#2055# <Cannot proceed: Bit rate of D10 video must be 50, 40 or 30Mbps>
#2056# <Flush cancelled: You need to provide 1 concrete material to create op1a files.>

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

128

#2057# <Flush cancelled: You need to provide 1 concrete material for each opatom file.>
#2058# <Flush cancelled: You need to provide at least 2 concrete materials to create op1b files.>
#2059# <Flush cancelled: You need to provide at least 2 concrete materials to create op2a files.>
#2060# <Flush cancelled: You need to provide at least 4 concrete materials to create op2b files.>
#2061# <Cannot add concrete material: only frame wrapped material can be added to this file.>
#2062# <Cannot link this concrete material with the previous : check that each track is in correspondency with a track
of the same nature (video, audio or data).>
#2063# <Cannot proceed : op2b files require at least two set of ganged concrete material.>
#2064# <Cannot proceed : each set of ganged material should contain the same number of concrete material in an op2b
file.>
#2065# <Cannot proceed : you must create a new set of ganged material first.>
#2066# <Cannot proceed : a thread is already running for that file.>
#2067# <Cannot proceed : D10 video system is PAL(NTSC) while D10 audio system is NTSC(PAL).>
#2068# <Cannot proceed : MPEG audio substream should be MPEG ES or AES3 (S302M) only.>
#2069# <Crypted essence : invalid cipher key.>
#2070# <Encryption failed.>
#2071# <Cannot proceed : invalid frame header.>
#2072# <Cannot proceed : uncompressed data, user has to fill file descriptor.>
#2073# <Cannot proceed : file descriptor is not complete.>
#2074# <Cannot proceed : a wrong file descriptor has been set for an essence.>
#2075# <Cannot proceed : user file descriptor doesn't match corresponding essence.>
#2076# <Cannot proceed : unable to reach information in the stream.>
#2077# <Cannot proceed : invalid TIFF header.>
#2078# <Cannot proceed : not supported TIFF format.>
#2079# <Streaming : stream doesn't exist (invalid stream id)>
#2080# <Failed to open externally referenced essence file>
#2081# <Externally referenced essence file is not of the appropriate type>
#2082# <Externally referenced essence file is truncated>
#2083# <Cannot proceed: Failed to build complete path to external reference file.>
#2084# <Cannot proceed: Could not find source package with the same UMID in the external reference file.>
#2085# <Cannot proceed: Invalid generic material for this operational pattern.>
#2086# <Cannot proceed: Invalid timecode for this track.>
#2087# <Cannot proceed: Error during creation of file: not enough space to write index table.>
#2088# <Cannot proceed: Seeking on the output stream must be enabled when creating an OpZero file.>
#2089# <Cannot proceed: D10 audio must be set to 48000Hz.>

// Fatal Error
#3001# <MxfTk Internal Error>
#3002# <Error upon loading of localtag dictionary>
#3003# <MXF_HOME is not set>
#3004# <Xerces Internal Error>
#3005# <Xerces Unexpected Error>
#3006# <No Metadata Dictionary Set>
#3007# <DEFAULT_MXF_DICTIONARY is not set>
#3008# <Error upon loading of MxfTk license file : cannot open file>
#3009# <Error upon loading of MxfTk license file : more than one file detected>
#3010# <Wrong license key in the license file.>
#3011# <Cannot initialize MxfTk library: Check your MXF_HOME path>
#3012# <Cannot complete MxfTk library initialization>
#3013# <MxfTk evaluation version expired>
#3014# <Invalid Metadata dictionary>
#3015# <Invalid MXF file : missing Instance UID properties>
#3016# <MXF does not allow to clip wrap source files larger than 4Gb. Try frame wrapping>
#3017# <MXFTk tried to seek backward on a non-seekable stream.>
#3018# <A numerical error occured. Cannot continue.>
#3019# <Process stopped: The timecode duration doest not match the essence tracks duration.>

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

129

#3020# <Process stopped: A timeline metadata track does not match the video or audio track duration.>
#3021# <Process stopped: An event metadata track contains a metadata segment that goes beyong the video or audio
track duration.>
#3022# <Process stopped: The essence configured by the user does not match the stream data.>
#3023# <Process stopped: The DV audio stream configured by the user is missing from the stream.>
#3024# <Process stopped: The DV audio stream was not properly configured.>
#3025# <No license file to look for.>
#3026# <Cannot find license key in the license file.>
#3027# <License key is truncated in the license file.>
#3028# <Inappropriate license key found in the license file (it is not a key for this product).>
#3029# <Streaming mode : you must define the essence types of the streams in
I_essence_stream_task::get_essence_source().>
#3030# <DV should be set to have no audio when wrapping P2 files.>
#3031# <Invalid KLV : should be a composite one.>
#3032# <Problem while updating track duration.>
#3033# <Unable to create partition.>
#3034# <Invalid license key for this computer. This key was created on another computer or you changed your
computer hardware.>

http://www.opencubetech.com

This document is the exclusive property of OpenCube Technologies SAS and cannot be reproduced or distributed without authorization.

130

References

377M: SMPTE, MXF File Format,
EG41: SMPTE, MXF Engineering Guideline,
EG42: SMPTE, MXF Descriptive Metadata Engineering Guideline,
380M: SMPTE, MXF Descriptive Metadata Scheme 1,
330M: SMPTE, Unique Material Identifiers,
S429-7: SMPTE, D-Cinema Packaging – Composition Playlist
S429-8: SMPTE, D-Cinema Packaging – Packing List
S429-9: SMPTE, D-Cinema Packaging – Asset Mapping and File Segmentation
RP210: SMPTE, Metadata Dictionary.

